运城西门子一级代理商
SIEMENS 上海诗幕自动化设备有限公司
我公司经营西门子 PLC;S7-200S7-300 S7-400 S7-1200 触摸屏,变频器,6FC,6SNS120 V10 V60 V80伺服数控备件:原装进口电机(1LA7、1LG4、1LA9、1LE1),国产电机(1LG0,1LE0)大型电机(1LA8,1LA4,1PQ8)伺服电机(1PH,1PM,1FT,1FK,1FS)西门子保内全新原装产品‘质保一年。一年内因产品质量问题免费更换新产品;不收取任何费。欢迎致电咨询。
詹: 99:850-111-590
用PLC实现步进电机的直接控制 步进电机的可编程控制器直接控制,可使组合机床自动生产线控制系统的成本显著下降。文章介绍了用PLC控制步进电机驱动的数控滑台方法,伺服控制、驱动及接口以及步进电机PLC控制的软件逻辑。 1 概述 在组合机床自动线中,一般根据不同的加工精度要求设置三种滑台(1)液压滑台,用于切削量大,加工精度要求较低的粗加工工序中;(2)机械滑台,用于切削量中等,具有一定加工精度要求的半精加工工序中;(3)数控滑台,用于切削量小,加工精度要求很高的精加工工序中。可编程控制器(简称PLC)以其通用性强、可靠性高、指令系统简单、编程简便易学、易于掌握、体积小、维修工作少、现场接口安装方便等一系列优点,被广泛应用于工业自动控制中。特别是在组合机床自动生产线的控制及CNC机床的S、T、M功能控制更显示出其的性能。PLC控制的步进电机开环伺服机构应用于组合机床自动生产线上的数控滑台控制,可省去该单元的数控系统使该单元的控制系统成本降低70~90%,甚至只占用自动线控制单元PLC的3~5个I/O接口及<1KB的内存。特别是大型自动线中可以使控制系统的成本显著下降。 2 PLC控制的数控滑台结构 一般组合机床自动线中的数控滑台采用步进电机驱动的开环伺服机构。采用PLC控制的数控滑台由可编程控制器、环行脉冲分配器、步进电机驱动器、步进电机和伺服传动机构等部分组成,见图1。 图1 伺服传动机构中的齿轮Z1、Z2应该采取消隙措施,避免产生反向死区或使加工精度下降;而丝杠传动副则应该根据该单元的加工精度要求,确定是否选用滚珠丝杠副。采用滚珠丝杠副,具有传动效率高、系统刚度好、传动精度高、使用寿命长的优点,但成本较高且不能自锁。 3 数控滑台的PLC控制方法 数控滑台的控制因素主要有三个: 3.1 行程控制 一般液压滑台和机械滑台的行程控制是利用位置或压力传感器(行程开关/死挡铁)来实现;而数控滑台的行程则采用数字控制来实现。由数控滑台的结构可知,滑台的行程正比于步进电机的转角,因此只要控制步进电机的转角即可。由步进电机的工作原理和特性可知步进电机的转角正比于所输入的控制脉冲个数;因此可以根据伺服机构的位移量确定PLC输出的脉冲个数: n= DL/d (1) 式中 DL——伺服机构的位移量(mm),d ——伺服机构的脉冲当量(mm/脉冲) 3.2 进给速度控制 伺服机构的进给速度取决于步进电机的转速,而步进电机的转速取决于输入的脉冲频率;因此可以根据该工序要求的进给速度,确定其PLC输出的脉冲频率: f=Vf/60d (Hz) (2) 式中 Vf——伺服机构的进给速度(mm/min) 3.3 进给方向控制 进给方向控制即步进电机的转向控制。步进电机的转向可以通过改变步进电机各绕组的通电顺序来改变其转向;如三相步进电机通电顺序为A-AB-B-BC-C-CA-A…时步进电机正转;当绕组按A-AC-C-CB-B-BA-A…顺序通电时步进电机反转。因此可以通过PLC输出的方向控制信号改变硬件环行分配器的输出顺序来实现,或经编程改变输出脉冲的顺序来改变步进电机绕组的通电顺序实现。 4 PLC的软件控制逻辑 由滑台的PLC控制方法可知,应使步进电机的输入脉冲数和脉冲频率受到相应的控制。因此在控制软件上设置一个脉冲数和脉冲频率可控的脉冲信号发生器;对于频率较低的控制脉冲,可以利用PLC中的定时器构成,如图2所示。脉冲频率可以通过定时器的定时常数控制脉冲周期,脉冲数控制则可以设置一脉冲计数器C10。当脉冲数达到设定值时,计数器C10动作切断脉冲发生器回路,使其停止工作。伺服机构的步进电机无脉冲输入时便停止运转,伺服执行机构定位。当伺服执行机构的位移速度要求较高时,可以用PLC中的高速脉冲发生器。不同的PLC其高速脉冲的频率可达4000~6000Hz。对于自动线上的一般伺服机构,其速度可以得到充分满足。 图2 5 伺服控制、驱动及接口 5.1 步进电机控制系统的组成 步进电机的控制系统由可编程控制器、环行脉冲分配器和步进电机功率驱动器组成,其结构见图1。 控制系统中PLC用来产生控制脉冲;通过PLC编程输出一定数量的方波脉冲,控制步进电机的转角进而控制伺服机构的进给量;同时通过编程控制脉冲频率——既伺服机构的进给速度;环行脉冲分配器将可编程控制器输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。PLC控制的步进电机可以采用软件环行分配器,也可以采用如图1所示的硬件环行分配器。采用软环占用的PLC资源较多,特别是步进电机绕组相数M>4时,对于大型生产线应该予以充分考虑。采用硬件环行分配器,虽然硬件结构稍微复杂些,但可以节省占用PLC的I/O口点数,目前市场有多种芯片可以选用。步进电机功率驱动器将PLC输出的控制脉冲放大到几十~上百伏特、几安~十几安的驱动能力。一般PLC的输出接口具有一定的驱动能力,而通常的晶体管直流输出接口的负载能力仅为十几~几十伏特、几十~几百毫安。但对于功率步进电机则要求几十~上百伏特、几安~十几安的驱动能力,因此应该采用驱动器对输出脉冲进行放大。 5.2 可编程控制器的接口 如伺服机构采用硬件环行分配器,则占用PLC的I/O口点数少于5点,一般仅为3点。其中I口占用一点,作为启动控制信号;O口占用2点,一点作为PLC的脉冲输出接口,接至伺服系统硬环的时钟脉冲输入端,另一点作为步进电机转向控制信号,接至硬环的相序分配控制端,如图3所示;伺服系统采用软件环行分配器时,其接口如图4。 6 应用实例与结论 将PLC控制的开环伺服机构用于某大型生产线的数控滑台,每个滑台仅占用4个I/O接口,节省了CNC控制系统,其脉冲当量为0.01~0.05mm,进给速度为Vf=3~15m/min,完全满足工艺要求和加工精度要求。 根据功能流程图设计出PLC梯形图程序 根据图16所示的功能流程图,设计出梯形图程序。 1使用起保停电路模式的编程 对应的状态逻辑关系为: 对应的梯形图程序如图17所示。 2使用置位、复位指令的编程 对应的梯形图程序如图18所示。 3使用顺序控制指令的编程 对应的功能流程图如图19所示。对应的梯形图程序如图20所示。 (3)并行分支及编程方法 并行分支也分两种,图21a为并行分支的开始,图21b为并行分支的结束,也称为合并。并行分支的开始是指当转换条件实现后,同时使多个后续步激活。为了强调转换的同步实现,水平连线用双线表示。在图21a中,当工步2处于激活状态,若转换条件e=1,则工步3、4、5同时起动,工步2必须在工步3、4、5都开启后,才能关断。并行分支的合并是指:当前级步6、7、8都为活动步,且转换条件f成立时,开通步9,同时关断步6、7、8。
S7-300是模块化小型PlC系统,能满足中等性能要求的应用。其模块化结构设计使得各种单独的模块之间可进行广泛组合以用于扩展。系统组成中央处理单元(CPU):各种CPU有不同的性能,例如,有的CPU上集成有PROFIBUS—DP通讯接口等。信号模块(SM):用于数字量和模拟量输入/输出。通讯处理器(CP):用于连接网络和点对点连接。功能模块(FM):用于高速计数,定位操作(开环或闭环定位)和闭环控制。负载电源模块(PS):用于将SIMATICS7—300连接到120/230V交流电源,或24/48/60/110V直流电源。接口模块(1M):用于多机架配置时连接主机架(CR)和扩展机架(ER)。S7—300通过分布式的主机架(CR)和3个扩展机架(ER),可以操作多达32个模块。运行时无需风扇。SIMATICS7—300适用于通用领域:高电磁兼容性和强抗振动,冲击性,使其具有较高的工业环境适应性。功能SIMATICS7—300的大量功能能够支持和帮助用户进行编程、启动和维护,其主要功能如下:高速的指令处理:0.1—0.6u s的指令处理时间在中等到较低的性能要求范围内开辟了全新的应用领域。浮点数运算:用此功能可以有效地实现更为复杂的算术运算。方便用户的参数赋值:一个带标准用户接口的软件工具给所有模块进行参数赋值。人机界面(HMl):方便的人机界面服务已经集成在S7—300操作系统内、因此人机对话的编程要求大大减少。SIMATIC人机界面(HMl)从S7—300中取得数据,S7-300按用户的刷新速度传送这些数据。S7-300操作系统自动地处理数据的传送。诊断功能:CPU的智能化的诊断系统连续监控系统的功能是否正常、记录错误和特殊系统事件(例如:时、模块更换等)。口令保护:多级口令保护可以使用户高度、有效地保护其技术机密,防止未经允许的复制和修改,操作方式选择开关:操作方式选择开关像钥匙一样可以拔出,当钥匙拔出时,就不能改变操作方式。这样就防止非法删除或改写用户程序。

设计和功能
桌面 CPU 创新
桌面 CPU 创新
设计
S7-300 可以实现空间节省和模块式组态。除了模块,只需要一条 DIN 安装轨用于固定模块并把它们旋转到位。
这样就实现了坚固而且具有 EMC 兼容性的设计。
随用随建式的背板总线可以通过简单的插入附加的模块和总线连接器进行扩展。S7-300 系列丰富的产品既可以用于集中扩展,也可用于构建带有 ET 200M 的分布式结构;因此实现了经济高效的备件控制。
扩展选件
如果自动化任务需要过 8 个模块,S7-300 的中央控制器 (CC) 可以使用扩展装置 (EU) 扩展。中心架上多可以有 32 个模块,每个扩展装置上多 8 个。接口模块 (IM) 可以同时处理各个机架之间的通讯。如果工厂覆盖范围很宽,CC/EU 还可以相互间隔较长距离安装(长 10m)。
在单层结构中,这可以实现 256 个 I/O 的大组态,在多层结构中多可以达到 1024 个 I/O。在带有 PROFIBUS DP 的分布式组态中,可以有 65536 个 I/O 连接(多 125 个站点,如通过 IM153 连接的 ET200M)。插槽可自由编址,因此无需插槽规则。
| 西门子CPU315-2PN/DP报价销售 |
西门子触摸屏一级代理商 西门子通讯电缆一级代理商 西门子伺服数控一级代理商 西门子S7-300代理商 西门子S7-400代理商
电源模板
6ES7 307-1BA00-0AA0 电源模块(2A)
6ES7307-1EA00-0AA0 电源模块(5A)
6ES7307-1KA01-0AA0 电源模块(10A)
CPU
6ES7312-1AE13-0AB0 CPU312,32K内存
6ES7312-5BE03-0AB0 CPU312C,32K内存 10DI/6DO
6ES7313-5BF03-0AB0 CPU313C,64K内存 24DI/16DO / 4AI/2AO
6ES7313-6BF03-0AB0 CPU313C-2PTP,64K内存 16DI/16DO
6ES7313-6CF03-0AB0 CPU313C-2DP,64K内存 16DI/16DO
6ES7314-1AG13-0AB0 CPU314,96K内存
6ES7314-6BG03-0AB0 CPU314C-2PTP 96K内存 24DI/16DO / 4AI/2AO
6ES7314-6CG03-0AB0 CPU314C-2DP 96K内存 24DI/16DO / 4AI/2AO
6ES7315-2AG10-0AB0 CPU315-2DP, 128K内存
6ES7315-2EH13-0AB0 CPU315-2 PN/DP, 256K内存
6ES7317-2AJ10-0AB0 CPU317-2DP,512K内存
6ES7317-2EK13-0AB0 CPU317-2 PN/DP,1MB内存
6ES7318-3EL00-0AB0 CPU319-3 PN/DP,1.4M内存
内存卡
6ES7953-8LF20-0AA0 SIMATIC Micro内存卡 64kByte(MMC)
6ES7953-8LG11-0AA0 SIMATIC Micro内存卡128KByte(MMC)
6ES7953-8LJ20-0AA0 SIMATIC Micro内存卡512KByte(MMC)
6ES7953-8LL20-0AA0 SIMATIC Micro内存卡2MByte(MMC)
6ES7953-8LM20-0AA0 SIMATIC Micro内存卡4MByte(MMC)
6ES7953-8LP20-0AA0 SIMATIC Micro内存卡8MByte(MMC)
开关量模板
6ES7321-1BH02-0AA0 开入模块(16点,24VDC)
6ES7321-1BH10-0AA0 开入模块(16点,24VDC)
6ES7321-1BH50-0AA0 开入模块(16点,24VDC,源输入)
6ES7321-1BL00-0AA0 开入模块(32点,24VDC)
6ES7321-7BH01-0AB0 开入模块(16点,24VDC,诊断能力)
6ES7321-1EL00-0AA0 开入模块(32点,120VAC)
6ES7321-1FF01-0AA0 开入模块(8点,120/230VAC)
6ES7321-1FF10-0AA0 开入模块(8点,120/230VAC)与公共电位单独连接
6ES7321-1FH00-0AA0 开入模块(16点,120/230VAC)
6ES7321-1CH00-0AA0 开入模块(16点,24/48VDC)
6ES7321-1CH20-0AA0 开入模块(16点,48/125VDC)
6ES7322-1BH01-0AA0 开出模块(16点,24VDC)
6ES7322-1BH10-0AA0 开出模块(16点,24VDC)高速
6ES7322-1CF00-0AA0 开出模块(8点,48-125VDC)
6ES7322-8BF00-0AB0 开出模块(8点,24VDC)诊断能力
6ES7322-5GH00-0AB0 开出模块(16点,24VDC,独立接点,故障保护)
6ES7322-1BL00-0AA0 开出模块(32点,24VDC)
6ES7322-1FL00-0AA0 开出模块(32点,120VAC/230VAC)
6ES7322-1BF01-0AA0 开出模块(8点,24VDC,2A)
6ES7322-1FF01-0AA0 开出模块(8点,120V/230VAC)
6ES7322-5FF00-0AB0 开出模块(8点,120V/230VAC,独立接点)
6ES7322-1HF01-0AA0 开出模块(8点,继电器,2A)
6ES7322-1HF10-0AA0 开出模块(8点,继电器,5A,独立接点)
6ES7322-1HH01-0AA0 开出模块(16点,继电器)
6ES7322-5HF00-0AB0 开出模块(8点,继电器,5A,故障保护)
6ES7322-1FH00-0AA0 开出模块(16点,120V/230VAC)
6ES7323-1BH01-0AA0 8点输入,24VDC;8点输出,24VDC模块
6ES7323-1BL00-0AA0 16点输入,24VDC;16点输出,24VDC模块
模拟量模板
6ES7331-7KF02-0AB0 模拟量输入模块(8路,多种信号)
6ES7331-7KB02-0AB0 模拟量输入模块(2路,多种信号)
6ES7331-7NF00-0AB0 模拟量输入模块(8路,15位精度)
6ES7331-7NF10-0AB0 模拟量输入模块(8路,15位精度)4通道模式
6ES7331-7HF01-0AB0 模拟量输入模块(8路,14位精度,快速)
6ES7331-1KF01-0AB0 模拟量输入模块(8路, 13位精度)
6ES7331-7PF01-0AB0 8路模拟量输入,16位,热电阻
6ES7331-7PF11-0AB0 8路模拟量输入,16位,热电偶
6ES7332-5HD01-0AB0 模拟输出模块(4路)
6ES7332-5HB01-0AB0 模拟输出模块(2路)
6ES7332-5HF00-0AB0 模拟输出模块(8路)
6ES7332-7ND02-0AB0 模拟量输出模块(4路,15位精度)
6ES7334-0KE00-0AB0 模拟量输入(4路RTD)/模拟量输出(2路)
6ES7334-0CE01-0AA0 模拟量输入(4路)/模拟量输出(2路)
附件
6ES7365-0BA01-0AA0 IM365接口模块
6ES7360-3AA01-0AA0 IM360接口模块
6ES7361-3CA01-0AA0 IM361接口模块
6ES7368-3BB01-0AA0 连接电缆 (1米)
6ES7368-3BC51-0AA0 连接电缆 (2.5米)
6ES7368-3BF01-0AA0 连接电缆 (5米)
6ES7368-3CB01-0AA0 连接电缆 (10米)
6ES7390-1AE80-0AA0 导轨(480mm)
6ES7390-1AF30-0AA0 导轨(530mm)
6ES7390-1AJ30-0AA0 导轨(830mm)
6ES7390-1BC00-0AA0 导轨(2000mm)
6ES7392-1AJ00-0AA0 20针前连接器
6ES7392-1AM00-0AA0 40针前连接器
功能模板
6ES7350-1AH03-0AE0 FM350-1 计数器功能模块
6ES7350-2AH00-0AE0 FM350-2 计数器功能模块
6ES7351-1AH01-0AE0 FM351 定位功能模块
6ES7352-1AH02-0AE0 FM352 电子凸轮控制器+组态包光盘
6ES7355-0VH10-0AE0 FM355C 闭环控制模块
6ES7355-1VH10-0AE0 FM355S 闭环控制系统
6ES7355-2CH00-0AE0 FM355-2C 闭环控制模块
6ES7355-2SH00-0AE0 FM355-2S 闭环控制模块
6ES7338-4BC01-0AB0 SM338位置输入模块
6ES7352-5AH00-0AE0 FM352-5高速布尔处理器
6ES7352-5AH00-7XG0 FM352-5功能软件包
通讯模板
6ES7340-1AH02-0AE0 CP340 通讯处理器(RS232)
6ES7340-1BH02-0AE0 CP340 通讯处理器(20mA/TTY)
6ES7340-1CH02-0AE0 CP340 通讯处理器(RS485/RS422)
6ES7341-1AH01-0AE0 CP341 通讯处理器(RS232)
6ES7341-1BH01-0AE0 CP341 通讯处理器(20mA/TTY)
6ES7341-1CH01-0AE0 CP341 通讯处理器(RS485/RS422)
6ES7870-1AA01-0YA0 可装载驱动 MODBUS RTU 主站
6ES7870-1AB01-0YA0 可装载驱动 MODBUS RTU 从站
6ES7902-1AB00-0AA0 RS232电缆 5m
6ES7902-1AC00-0AA0 RS232电缆 10m
6ES7902-1AD00-0AA0 RS232电缆 15m
6ES7902-2AB00-0AA0 20mA/TTY电缆 5m
6ES7902-2AC00-0AA0 20mA/TTY电缆 10m
6ES7902-2AG00-0AA0 20mA/TTY电缆 50m
6ES7902-3AB00-0AA0 RS485/RS422电缆 5m
6ES7902-3AC00-0AA0 RS485/RS422电缆 10m
6ES7902-3AG00-0AA0 RS485/RS422电缆 50m
6GK7342-5DA02-0xE0 CP342-5通讯模块
6GK7342-5DF00-0xE0 CP342-5 光纤通讯模块
6GK7343-5FA01-0xE0 CP343-5通讯模块
6GK7343-1EX30-0xE0 CP343-1 以太网通讯模块
6GK7343-1EX21-0xE0 CP343-1 以太网通讯模块
6GK7343-1CX00-0xE0 CP343-1 以太网通讯模块
6GK7343-1CX10-0xE0 CP343-1 以太网通讯模块
6GK7343-1GX20-0xE0 CP343-1 IT 以太网通讯模块
6GK7343-1GX21-0xE0 CP343-1 IT 以太网通讯模块(支持PROFINET)
6GK7343-1HX00-0xE0 CP343-1PN PROFINET以太网通讯模块
6GK7343-2AH00-0xA0 CP343-2 AS-Interface
西门子PLC S7-300系列PLC安装及注意事项
西门子S7-300安装注意事项一) 辅助电源功率较小,只能带动小功率的设备(光电传感器等);
西门子S7-300安装注意事项二) 一般PLC均有一定数量的占有点数(即空地址接线端子),不要将线接上;
西门子S7-300安装注意事项三) PLC存在I/O响应延迟问题,尤其在快速响应设备中应加以注意。
西门子S7-300安装注意事项四) 输出有继电器型,晶体管型(高速输出时宜选用),输出可直接带轻负载(LED指示灯等);
西门子S7-300安装注意事项五) 输入/断开的时间要大于PLC扫描时间;
西门子S7-300安装注意事项六) PLC输出电路中没有保护,因此应在外部电路中串联使用熔断器等保护装置,防止负载短路造成损坏PLC;
西门子S7-300安装注意事项七) 不要将交流电源线接到输入端子上,以免烧坏PLC;
西门子S7-300安装注意事项八) 接地端子应独立接地,不与其它设备接地端串联,接地线裁面不小于2mm2;
西门子S7-300安装注意事项九) 输入、输出信号线尽量分开走线,不要与动力线在同一管路内或捆扎在一起,以免出现干扰信号,产生误动作;信号传输线
采用屏蔽线,并且将屏蔽线接地;为保证 信号可靠,输入、输出线一般控制在20米以内;扩展电缆易受噪声电干扰,应远离动力线、高压设备等。
S7-300硬件结构
S7-300或者S7-400的PLC是模块式的PLC,各种模块式相互独立的,分别安装在机架上。硬件结构如图:
DI:数字量输入模块,DO:数字量输出模块,AI:模拟量输入模块,AO:模拟量输出模块
7-CPU模块
S7-CPU模块可分为紧凑型、标准型、革、户外型、故障安全型、特种型CPU。
CPU312C表示是紧凑型CPU;
CPU313C-2DP表示集成了PROFIBUS-DP协议的紧凑型CPU;
CPU314-2PtP表示集成了点到点协议的紧凑型CPU;
CPU313表示标准型CPU;
CPU312IFM表示户外型CPU;
CPU317-2DP表示集成了PROFIBUS-DP协议的特种型CPU;
的运行模式 西门子CPU315-2PN/DP报价销售
1)RUN-P:可编程运行模块,在此模式下,可以让用户调试运行程序。
2)RUN:运行模式,在此模式下,仅能运行程序,不能修改程序。
3)STOP:停机模式,在此模式下,CPU不执行用户程序,但是装有STEP7的计算机可以读出或者修改用户程序。
4)MRES:存储器复位模式。当开关在此位置释放时会自动返回到STOP位置,该位置不可保存。
7-300PLC功能
1)高速的指令处理。
2)人机界面(HMI)。
3)诊断功能。
4)口令保护。
7-300模块(多机架图)
~~~
MPI是多点接口(Multi Point Interface)的简称,是西门子公司开发的用于PLC之间通讯的保密的协议。MPI通讯是当通信速率要求不高、通信数据
量不大时,可以采用的一种简单经济的通讯方式。MPI通信可使用PLC S7-200/300/400、操作面板TP/OP及上位机MPI/PROFIBUS通信卡,如
CP5512/CP5611/CP5613等进行数据交换。MPI网络的通信速率为19.2Kbps~12Mbps,多可以连接32个节点,大通讯距离为50m,但是
可以通过中继器来扩展长度。
~~~
7-300数字量模块地址的确定
1)数字I/O模块每个槽占4B(等于32个I/O点),如槽1的地址为0.0~3.7;数字量模块中的输入点和输出点的地址由字节部分和位部分组成,
如I0.0,可以参考下图理解:
西门子S7-1200代理商 西门子S7-1500代理商
西门子S7-300PLC河北代理商 西门子S7-300PLC山西代理商 西门子S7-300PLC辽宁代理商
西门子S7-300PLC吉林代理商 西门子S7-300PLC黑龙江代理商 西门子S7-300PLC江苏代理商
西门子S7-300PLC浙江代理商 西门子S7-300PLC安徽代理商 西门子S7-300PLC福建代理商
西门子S7-300PLC江西代理商 西门子S7-300PLC山东代理商 西门子S7-300PLC河南代理商
西门子S7-300PLC湖北代理商 西门子S7-300PLC湖南代理商 西门子S7-300PLC广东代理商
西门子S7-300PLC海南代理商 西门子S7-300PLC四川代理商 西门子S7-300PLC贵州代理商
西门子S7-300PLC云南代理商 西门子S7-300PLC陕西代理商 西门子S7-300PLC甘肃代理商
西门子S7-300PLC青海代理商 西门子S7-300PLC北京代理商 西门子S7-300PLC天津代理商
西门子S7-300PLC上海代理商 西门子S7-300PLC重庆代理商 西门子S7-300PLC广西代理商
西门子S7-300PLC内蒙古代理商 西门子S7-300PLC宁夏代理商 西门子S7-300PLC新疆代理商

选择序列PLC SFC编程方法 (1)选择性分支的编程 当某个状态的转移条件过一个时,需要用选择性分支编程。与一般状态编程一样,行驱动处理,然后设置转移条件,编程时要由左至右逐个编程,如图1所示 (2)选择性汇合编程 如图2,设三个分支分别编审到状态S29、S39、S49时,汇合到状态S50,其用户程序编制时,行汇合前状态的输出处理,然后向汇合状态转移,此后由左至右进行汇合转移,这是为了自动生成SFC画面而追加的规则。 分支、汇合的转移处理程序中,不能用MPS、MRD、MPP、ANB、ORB指令。 是对图5-40功能表图采用STL指令编写的梯形图。对于并行序列的分支,当S0的STL触点和X0的常开触点均接通时,S31和S34被同时置位,系统程序将前级步S0变为不活动步;对于并行序列的合并,用S32、S35的STL触点和X2的常开触点组成的串联电路使S33置位。在图5-41中,S32和S35的STL触点出现了两次,如果不涉及并行序列的合并,同一状态器的STL触点只能在梯形图中使用一次,当梯形图中再次使用该状态器时,只能使用该状态器的一般的常开触点和LD指令。另外,FX系列PLC规定串联的STL触点的个数不能过8个,换句话说,一个并行序列中的序列数不能过8个。 图5-41 并行序列的梯形图 (2)使用通用指令的编程 如图5-42所示的功能表图包含了跳步、循环、选择序列和并行序列等基本环节。 图5-42 复杂的功能表图 如图5-43所示是对图5-42的功能表图采用通用指令编写的梯形图。步M301之前有一个选择序列的合并,有两个前级步M300和M313,M301的起动电路由两条串联支路并联而成。M313与M301之间的转换条件为,相应的起动电路的逻辑表达式为,该串联支路由M313、X13的常开触点和C0的常闭触点串联而成,另一条起动电路则由M300和X0的常开触点串联而成。步M301之后有一个并行序列的分支,当步M301是活动步,并且满足转换条件X1,步M302与步M306应同时变为活动步,这是用M301和Xl的常开触点组成的串联电路分别作为M302和M306的起动电路来实现的,与此同时,步M301应变为不活动步。步M302和M306是同时变为活动步的,因此只需要将M302的常闭触点与M301的线圈串联就行了。 图5-43 使用通用指令编写的梯形图 步M313之前有一个并行序列的合并,该转换实现的条件是所有的前级步(即步M305和M311)都是活动步和转换条件X12满足。由此可知,应将M305,M311和X12的常开触点串联,作为控制M313的起动电路。M313的后续步为步M314和M301,M313的停止电路由M314和M301的常闭触点串联而成。 编程时应该注意以下几个问题: 1)不允许出现双线圈现象。 2)当M314变为“1”状态后,C0被复位(见图5-43),其常闭触点闭合。下一次扫描开始时M313仍为“1”状态(因为在梯形图中M313的控制电路放在M314的上面),使M301的控制电路中上面的一条起动电路接通,M301的线圈被错误地接通,出现了M314和M301同时为“1”状态的异常情况。为了解决这一问题,将M314的常闭触点与M301的线圈串联。 3)如果在功能表图中仅有由两步组成的小闭环,如图5-44a所示,则相应的辅助继电器的线圈将不能“通电”。例如在M202和X2均为“1”状态时,M203的起动电路接通,但是这时与它串联的M202的常闭触点却是断开的,因此M203的线圈将不能“通电”。出现上述问题的根本原因是步M202既是步M203的前级步,又是它的后序步。如图5-44b所示在小闭环中增设一步就可以解决这一问题,这一步只起延时作用,延时时间可以取得很短,对系统的运行不会有什么影响。 图5-44 仅有两步的小闭环的处理 (3)使用以转换为中心的编程 与选择序列的编程基本相同,只是要注意并行序列分支与合并处的处理。 (4)使用仿STL指令的编程 如图5-45所示是对图5-42功能表图采用仿STL指令编写的梯形图。在编程时用接在左侧母线上与各步对应的辅助继电器的常开触点,分别驱动一个并联电路块。这个并联电路块的功能如下:驱动只在该步为“1”状态的负载的线圈;将该步所有的前级步对应的辅助继电器复位;指明该步之后的一个转换条件和相应的转换目标。以M301的常开触点开始的电路块为例,当M301为“1”状态时,仅在该步为“1”状态的负载Y0被驱动,前级步对应的辅助继电器M300和M313被复位。当该步之后的转换条件X1为“1”状态时,后续步对应的M302和M306被置位。 图5-45 采用仿STL指令编写的梯形图 如果某步之后有多个转换条件,可将它们分开处理,例如步M302之后有两个转换,其中转换条件T0对应的串联电路放在电路块内,接在左侧母线上的M302的另一个常开触点和转换条件X2的常开触点串联,作为M305置位的条件。某一负载如果在不同的步为“1”状态,它的线圈不能放在各对应步的电路块内,而应该用相应辅助继电器的常开触点的并联电路来驱动它。
西门子触摸屏在工业自动化领域广泛应用,它们是用来完成用户与设备交互的重要工具。随着西门子产品线的不断更新,西门子触摸屏也不断出现新的产品,这些新触摸屏性能更加优良,能满足用户各种类型的需求。其中新一代的西门子HMI移动面板是西门子HMI家族成员中的一个组成部分,在自动化项目中使用广泛,本文下面就对西门子HMI移动面板的特点进行介绍。二、西门子HMI移动面板特点西门子HMI移动面板的用途在于,无论是种行业或应用中,只要机器和设备需要现场移动控制和监视,就需要使用西门子HMI移动面板,它的特点有:1. 符合人体工程学设计,且小巧轻便坚固耐用2. 可戴手套直接操作薄膜按键或触摸屏3. 支持运行中热插拔,具有高度灵活性4. 连接点识别5. 无需中断急停电路(使用“增强型”连接盒),即可进行移动面板的快速插拔,并通过“基本型”连接盒与设备一一对应6. 的安全理念7. 集成各种接口(串口、MPI、PROFIBUS 或 PROFINET/以太网)8. 集成多种驱动程序,可兼容第三方控制器9. 设备对接后启动时间短
三、小结综上所述,西门子HMI移动面板是新一代西门子HMI触摸屏中移动性能好的一款产品。它为用户带来了便捷体验,与此同时,它可以使用TIA博途软件进行程序的组态,使得编程和调试过程变得简单有效,提高了工程效率。如果用户需要更多的了解西门子HMI操作面板的选型和使用方法,请联系我们,我们会更好的提供相关技术支持。
随着工业自动化的发展,越来越多的工程项目中使用到了西门子HMI操作面板,它为客户提供了友好的界面,便捷的操作方式,使得整个系统中的设备状态可以清晰的显示在画面上,并由操作员进行控制。西门子HMI操作面板一般安装在控制柜的正面,便于用户对设备和数据进行监控。用户在使用过程中,有时会遇到西门子HMI出现故障的情况。本文下面就为您介绍一下西门子HMI的故障诊断方法,供用户在项目调试过程中进行参考。
PLC控制器的CPU简介 CPU是可编程控制器的控制中枢,相当于人的大脑。CPU一般由控制电路、运算器和寄存器组成。这些电路通常都被封装在一个集成的芯片上。CPU通过地址总线、数据总线、控制总线与存储单元、输入输出接口电路连接。CPU的功能有:它在系统监控程序的控制下工作,通过扫描方式,将外部输入信号的状态写入输入映象寄存区域,PLC进入运行状态后,从存储器逐条读取用户指令,按指令规定的任务进行数据的传送、逻辑运算、算术运算等,然后将结果送到输出映像寄存区域。 CPU常用的微处理器有通用型微处理器、单片机和位片式计算机等。通用型微处理器常见的如Intel公司的8086、80186、到Pentium系列芯片,单片机型的微处理器如Intel公司的MCS-96系列单片机,位片式微处理器如AMD 2900系列的微处理器。小型PLC 的CPU多采用单片机或CPU,中型PLC的CPU大多采用16位微处理器或单片机,大型PLC的CPU多用高速位片式处理器,具有高速处理能力。 编程器是PLC的重要外围设备。利用编程器将用户程序送入PLC的存储器,还可以用编程器检查程序,修改程序,监视PLC的工作状态。 常见的给PLC编程的装置有手持式编程器和计算机编程方式。在可编程序控制器发展的初期,使用编程器来编程。小型可编程序控制器使用价格较便宜、携带方便的手持式编程器,大中型可编程序控制器则使用以小CRT作为显示器的便携式编程器。编程器只能对某一厂家的某些产品编程,使用范围有限。手持式编程器不能直接输入和编辑梯形图,只能输入和编辑指令,但它有体积小,便于携带,可用于现场调试,价格便宜的优点。 计算机的普及,使得越来越多的用户使用基于个人计算机的编程软件。目前有的可编程序控制器厂商或经销商向用户提供编程软件,在个人计算机上添加适当的硬件接口和软件包,即可用个人计算机对PLC编程。利用微机作为编程器,可以直接编制并显示梯形图,程序可以存盘、打印、调试,对于查找故障非常有利。 PLC梯形图编程的特点与优势 1)PLC梯形图中的某些编程元件沿用了继电器这一名称,如输入继电器、输出继电器、内部辅助继电器等,但是它们不是真实的物理继电器(即硬件继电器),而是在软件中使用的编程元件。每一编程元件与PLC存储器中元件映像寄存器的二个存储单元相对应。以辅助继电器为例,如果该存储单元为0状态,梯形图中对应的编程元件的线圈“断电”,其常开触点断开,常闭触点闭合,称该编程元件为0状态,或称该编程元件为OFF(断开)。该存储单元如果为1状态,对应编程元件的线圈“通电”,其常开触点接通,常闭触点断开,称该编程元件为l状态,或称该编程元件为ON(接通)。 2)根据梯形图中各触点的状态和逻辑关系,求出与图中各线圈对应的编程元件的ON/OFF状态,称为梯形图的逻辑解算。逻辑解算是按梯形图中从上到下、从左至右的顺序进行的。解算的结果,马上可以被后面的逻辑解算所利用。逻辑解算是根据输入映像寄存器中的值,而不是根据解算瞬时外部输入触点的状态来进行的。 3)梯形图中各编程元件的常开触点和常闭触点均可以无限多次地使用。 4)输入继电器的状态地取决于对应的外部输入电路的通断状态,因此在梯形图中不能出现输入继电器的线圈。 PLC硬件系统的简化框图 ?