四平玻纤聚氨酯型材——四平股份有限公司

四平玻纤聚氨酯型材——四平股份有限公司
根据负压法测孔原理,采用土壤吸力平板仪测试了透水模板布的孔径分布累计曲线,同时运用基于平面随机分割(Poisson polyhedron)理论得到的非织造土工织物孔径分布计算模型,计算了透水模板布孔径分布累计曲线.结果表明,尽管透水模板布孔径分布累计曲线两端约10%的大孔和5%的小孔其实测结果与理论计算有偏差,但实测曲线与模型计算曲线孔径范围和主体分布相当一致,说明孔径分布计算模型能够有效反映透水模板布的孔径分布特征.
玻纤增强聚氨酯保温耐火窗解决方案
要满足现有的节能和耐火标准,需要在型材的机械性能,如刚度/强度、保温性能和耐火性能之间取得很好的平衡。聚氨酯门窗型材为连续玻璃纤维增强聚氨酯复合材料,以无碱玻璃纤维为增强材料,聚氨酯树脂为基体树脂,通过闭模注射拉挤工艺成型,集保温、承载、耐火于一体,能够很好地兼顾耐火性能和保温性能。
四平玻纤聚氨酯型材——四平股份有限公司

四平玻纤聚氨酯型材——四平股份有限公司
用非接触式电阻率测试仪研究了粉煤灰及石膏掺量对路面基层水泥24 h内电阻率的影响,分析了该水泥与32.5矿渣硅酸盐水泥凝结时间与电阻率的关系.结果表明:随着粉煤灰和石膏掺量的增加,路面基层水泥凝结时间延长,其中粉煤灰掺量的影响更显著;路面基层水泥密度小,液相体积分数小,孔连通性差,离子浓度低,因而其电阻率较大;电阻率曲线及其微分曲线上特征点出现时间和用维卡仪测得的凝结时间有较好对应关系.
a)承载型材采用连续玻纤增强聚氨酯复合材料,其纤维含量高达80wt%。向火面遇火时,型材的表面处理层与表层聚氨酯材料相继燃烧,由数百万根玻纤束构成防火墙的层层帘障能有效减缓燃烧向室内侧蔓延。
b)尽管向火侧逐渐升温至800℃以上,此类非金属承载型材可以降低往背火侧的传热;同时玻纤还未液化,留有较好的力学承载能力维持框体结构,避免变形过量产生缝隙。
c)考虑到表面装饰的需求,玻纤增强聚氨酯型材的室内外侧也可以使用铝合金饰面,这种情况下,燃烧时只有向火侧的铝合金会失去力学性能,但不影响整体结构。
d)采用普通浮法(或Low-E)玻璃与防火玻璃组合而成的中空玻璃。火焰在突破中空层后,会被防火玻璃层有效阻挡。
e)局部增强设计与无封材料在实现耐火增强的同时,对保温性能并没有明显的影响。
4.1型材

四平玻纤聚氨酯型材——四平股份有限公司
以多孔石墨为载体,采用高温吸附法将月桂酸-肉豆蔻酸二元低共融脂肪酸与其复合制备多孔石墨基复合相变材料,通过冷热循环耐久性试验检测其温度敏感性和长期稳定性,以此确定多孔石墨烧制工艺及脂肪酸吸附量、吸附温度.结果表明:烧制温度为800℃的多孔石墨,在水浴温度为70℃的条件下可吸附700%(质量分数)脂肪酸,这种以多孔石墨为载体所制备的复合相变材料冷热循环质量损失小于3%,碱浸泡前后相变点基本无变化,相变焓损失为10.14%.