江苏码头构件应力应变监测报告办理

发布时间:2021-01-20

 江苏码头构件应力应变监测报告办理

承接所有地区检测鉴定业务/诚招城市合伙人

本项目采用1+2型GPS 监测方案,即一个固定站(基站)和二个移动站。当结构施工到相应监测楼层时,在结构刚度中心及角部各布置两个移动站,用来测试结构的整体水平位移。由于结构的运动除了两个方向的水平平动外还可能有绕中心的扭转,根据两个测点的测试结果可以计算出结构的扭转相应。 固定站的安装标准要求很高,需要选择距离移动站600m之内一个开阔场地采用挖坑深埋方式布设固定站,作为移动站的差分参考。如果工地现场的条件不够,可以考虑直接采用当地政府的大地监测网络基准站,通常他们具有更高的安装精度,一般数据的获得需要付费。 移动站安装在结构上之后,结构一直在振动,因此,移动站的零点选择也是比较困难的。零点的可以采用如下步骤实现:振动位移可以通过加速度计和激光位移计,通过振动台给出不同频率和振幅的振动,然后由测到的GPS振动位移与加速度计和激光位移计测到的振动位移相比,从而验证GPS测定振动位移的精度。用同样的方法,通过激光位移计测到的平动位移(平均位移)验证GPS的平均位移精度。 由于本结构高,建筑地面的 GPS 参考站信号会被周围建筑阻挡;因此本项目拟在塔楼开阔场地不动点处布置1个GPS参考站,其与2个GPS流动站组成一个完备的GPS 观测环路,以提高GPS观测的可靠性,GPS在平面的布置点如图 6.5?4。当结构施工到相应监测楼层时,在所监测楼面中心处和外筒各布置一台GPS观测站监测结构的水平方向位移。结构的测试楼层主要为10个加强层。由于结构的运动除了两个水平方向平动外还可能有绕中心的扭转,根据中心点和外筒测量得到的运动可以计算出结构的扭转 。江苏码头构件应力应变监测报告办理

通际检测【业务范围】:房屋检测、厂房检测、幕墙检测、抗震鉴定、烟囱检测、广告牌检测、钢结构检测、货架检测、舞台检测、隧道桥梁检测、港口码头检测、焊接工艺评定、产品失效分析、热像检测、建筑物振动检测、地下管网检测鉴定、工业设备可靠性鉴定 。

江苏码头构件应力应变监测报告办理

结构健康监测- 结构模态分析: 结构动力特性不仅与结构当前的工作状态有着密切的直接联系,而且也是进行结构模型修正的重要参考因素。结构自振频率、振型和阻尼比可以针对动力响应实测数据(加速度、速度以及位移传感器实测得到的振动信号)进行频谱分析获得。由于传感器测试的数据往往包含了周边环境噪声的成分,同时结构属于频率密集型结构,在此背景下,直接针对动力响应实测数据进行频谱分析,确保由此方法获得的结构模态特征参数的准确性就显得比较困难。 为此,除了采用FFT变换和功率谱法分析结构的频谱特性之外,还采用小波变换和Hilbert-Huang变换来分析结构的时频特征,小波变换和Hilbert-Huang变换可以从结构的振动信号中分离出较密集的结构自振频率。此外,由于噪声的影响,使每一次测试得到的结构频率和振型均存在一定的差别,为此,我们采用统计分析的方法确定结构的频率和振型的概率分布。 另外,由于安装过程在结构内部引起的自平衡的初始安装应力,温度变化在静定结构内部引起的温度应力等都会导致结构动力特性的变化。考虑初始安装应力的实际影响,通过施工过程的跟踪监测可以获知竣工结构内部的安装应力分布特征及规律,在此基础上基于动力响应实测数据的结构模态分析结果很可能与结构理论计算得到的结果不一致,由此进行的有限元模型修正可以保证计算模型能更真实的反映结构的实际工作状态。考虑温度变化的实际影响,在不同温度场下测试分析获得结构的自振频率,找到温度对结构频率影响的规律,从而在对有限元模型进行修正时,剔除温度的影响 。江苏码头构件应力应变监测报告办理 结构健康监测--结构响应监测 1.1 位移监测。 结构位移监测拟在塔楼主体结构的中心布置二个全球定位系统(GPS)。用于监测主体结构在风荷载以及可能产生的地震作用下的水平位移*值。沿塔楼高度方向,在关键楼层处布置倾角仪,用于监测房屋中心点处的水平位移,因此应布置在核心筒连续的竖向墙体上。同时结合加速度仪的布置,可以得到结构整体的实时响应,实时掌握结构的整体性状。 1.2 加速度监测。 结构动力特性是反映结构性状的一个*重要、*直接的性能指标。在关键楼层布置加速度仪不仅可以获得结构的自振周期、频率以及阻尼,而且可以实时记录结构在风荷载、地震荷载作用下结构的反应。对于高层建筑,前5阶反应及前15阶模态是*为重要的。因此,动力响应传感器数量及布置应能获取使用阶段状态下结构的前五阶X向平动、Y向平动和前三阶扭转,不少于15阶模态的周期、振型和阻尼比。 1.3 应力应变监测。 测量塔楼关键构件的应变,关键构件包括: 1) 伸臂桁架和环带桁架的关键部位的上弦、下弦和斜腹杆; 2) 典型层巨柱的钢骨、钢筋和混凝土,交叉斜撑与巨柱相连的应力复杂部位; 3) 典型层核心筒的角部暗柱、核心筒内埋钢板和混凝土的关键部位; 4) 典型层的角部暗柱钢骨、墙身钢筋和混凝土; 5) 巨柱间的交叉斜撑; 6) 特殊楼层的水平桁架、梁; 7) 穹拱及塔冠钢结构 。

结构健康监测指的是针对工程结构的损伤识别及其特征化的策略和过程。结构损伤指的是结构材料参数及其几何特征的改变。结构健康监测过程涉及使用周期性采样的传感器阵列获取结构响应,损伤敏感指标的提取,损伤敏感指标的统计分析以确定当前结构健康状况等过程。 建立相应的健康监测系统对保证结构在施工过程以及运营期间的安全、适用具有重大作用: 1) 即时了解结构施工过程中的结构性状,实现对项目过程的有效控制; 2) 监测全寿命周期内的结构性状,发现荷载及结构响应的异常和结构损伤,确保结构的运营安全; 3) 预警极端灾害事件,评判灾害事件造成的损伤程度及部位,为业主进行灾害应急管理提供决策依据; 4) 为结构运营阶段的检查和维护方案提供信息和依据; 5) 实测获得的地震和结构动力响应将指导未来的高层建筑设计,也为高层建筑结构新技术的研究提供重要参考 。

江苏码头构件应力应变监测报告办理

结构健康监测--施工过程风速监测: 为了获得结构在风作用下响应的关键输入作用,进行风速的观测是至关重要的。施工阶段的风速监测不仅可以获得关键大风天气的风荷载的输入,也可以为结构性状的了解与结构响应的分析提供重要的参数。 由于风速是一个复杂的随机过程,对于风速的观测一般需要了解三个方向的风速输入,因此针对风速的监测拟采用三维超声风向风速仪和机械风向风速仪。施工阶段由于结构高度在不断变化之中,因此测点的位置也随之不断变化。在有大风来临时,将测点布置在结构*点。 在施工阶段,为了保证测试数据的度,两种类型的风速仪将考虑安装在施工塔吊的顶部,获取大风条件下主塔楼所在位置的风速、风向、湍流度、阵风因子、湍流积分尺度、湍流功率谱等边界层特性。 大风的监测与其他类型的监测不同,只有大风来临时对风进行实时监测才具有实际意义。因此对于施工阶段的风速监测采取有大风气候时进行观测,并初步以7m/s为风速监测的控制风速标准。 施工期间风速仪采用临时太阳能电池或蓄电池供电,采用相应数据采集设备进行数据的动态采集。风速仪有两种信号输出方式,一种为直接电压输出,另一种为直接输出RS-485数字信号;由于前者需要外部激励电源,因此,本方案采用RS-485 总线传输方式,因这种传输方式*远传输距离可达1200m。因此确定风速仪的设置位置距离数据采集设备的距离不宜过1200m。 设备的安装采用临时风速安装支架,固定在施工*位置处。需要在施工位置*位置处设置预埋件以固定风速安装支架 。Kbdc2ql88

结构健康监测- 结构模态分析: 结构动力特性不仅与结构当前的工作状态有着密切的直接联系,而且也是进行结构模型修正的重要参考因素。结构自振频率、振型和阻尼比可以针对动力响应实测数据(加速度、速度以及位移传感器实测得到的振动信号)进行频谱分析获得。由于传感器测试的数据往往包含了周边环境噪声的成分,同时结构属于频率密集型结构,在此背景下,直接针对动力响应实测数据进行频谱分析,确保由此方法获得的结构模态特征参数的准确性就显得比较困难。 为此,除了采用FFT变换和功率谱法分析结构的频谱特性之外,还采用小波变换和Hilbert-Huang变换来分析结构的时频特征,小波变换和Hilbert-Huang变换可以从结构的振动信号中分离出较密集的结构自振频率。此外,由于噪声的影响,使每一次测试得到的结构频率和振型均存在一定的差别,为此,我们采用统计分析的方法确定结构的频率和振型的概率分布。 另外,由于安装过程在结构内部引起的自平衡的初始安装应力,温度变化在静定结构内部引起的温度应力等都会导致结构动力特性的变化。考虑初始安装应力的实际影响,通过施工过程的跟踪监测可以获知竣工结构内部的安装应力分布特征及规律,在此基础上基于动力响应实测数据的结构模态分析结果很可能与结构理论计算得到的结果不一致,由此进行的有限元模型修正可以保证计算模型能更真实的反映结构的实际工作状态。考虑温度变化的实际影响,在不同温度场下测试分析获得结构的自振频率,找到温度对结构频率影响的规律,从而在对有限元模型进行修正时,剔除温度的影响 。

结构健康监测-施工过程标高监测 水平截面的倾斜度将直接影响结构的后续施工,应测量各控制截面监控点的标高以确保该截面的水平度。监控点的坐标测量也是本施工监控项目的重点。 1.1 监测控制网的建立 由于施工方已经建立了测量控制网,监控方在对测量控制网复核后,利用其外围控制网建立不同于施工方的内部网,以便将关键点的测量与施工方的结果进行比较。 在施工监控开始前,首先对施工方建立的施工平面控制网和高程控制网进行复测,高程和平面观测采用《建筑变形测量规程》中的二级变形测量精度指标,即:标高观测中观测点测站高差中误差不大于0.5mm;位移观测中观测点坐标中误差不大于3.0mm。高程基准网按《城市测量规范》中二等水准测量要求进行,采用精密水准仪,视线长度不大于50m,前后视距差不大于1.0m,任一测站前后视距累积差不大于3.0m。监控方在对测量控制网复核后,利用其外围控制网建立不同于施工方的监测控制网。以下各标高、坐标监测项目均是基于复测后的控制点进行。 1.2 监测时间和监测频率 水平度的测量须结合标高测量,并且在日出之前进行,以消除结构由于日照作用导致的不均匀温度分布所带来的影响。 由于核心筒与巨柱施工不同步,因此同一设计标高处的核心筒与巨柱施工是一前一后的,这就有可能导致标高不匹配的问题,从而使得连接核心筒和巨柱的伸臂桁架产生较大的内力,这对于结构是非常不利的,所以在进行标高监测时应确保同一区域内的巨柱和核心筒上的测点要同期实时观测,并及时记录对比。若出现标高不匹配的情况,可采取合适措施严格控制伸臂桁架的合拢时间,确保施工安全进行 。

苏州码头构件应力应变监测技术方案:http://www.testmart.cn/Home/News/data_detail/id/711993875.html

上一篇:黑河防渗土工膜价格公道 鱼塘防渗...
下一篇:便携式数显折射计