河南码头风荷载监测评估资质
承接所有地区检测鉴定业务/诚招城市合伙人
目前我国土木工程事故频繁发生,如桥梁的突然折断、房屋骤然倒塌等,地震、洪水、暴风等自然灾害也对建筑物和结构造成不同程度的损伤;在Northridge和1995年日本神户(Kobe)的大地震中,一些建筑物在遭受主震后并未立即倒塌,但结构却已受到严重损伤而未能及时发现,在后来的余震中倒塌了。还有一些人为的爆炸等破坏性行为,如美国世贸大褛倒塌对周围建筑物的影响,这些都造成了重大的人员伤亡和财产损失,而且已经引起人对于重大工程安全性的关心和重视、对结构性能进行监测和诊断,及时地发现结构的抗伤,对可能出现的灾害进行预测,评估其安全性已经成为未来工程的必然要求,也是木工程学科发展的一个重要领域。 健康监测系统及其组成:一般认为健康监测系统应包括下列几部分: 传感器系统,包括感知元件的选择和传感器网络在结构中的布置方案。 数据采集和分析系统,一般由强大的计算机系统组成。 监控中心,能够及时预测结构的异常行为。 实现诊断功能的各种软硬件,包括结构中损伤位置、程度类型识的*判据。 传愿器监测的实时信号通过信号采集装置送到监控中心,进行处理和判断,从而对结构的健康状态行评估,若出现异常,由监控中心发出预警信号,并由故障诊断模块分析查明异常原因,以便系统安全可地运行 。河南码头风荷载监测评估资质
通际检测【业务范围】:房屋检测、厂房检测、幕墙检测、抗震鉴定、烟囱检测、广告牌检测、钢结构检测、货架检测、舞台检测、隧道桥梁检测、港口码头检测、焊接工艺评定、产品失效分析、热像检测、建筑物振动检测、地下管网检测鉴定、工业设备可靠性鉴定 。
通际质量检测(上海)有限公司是*从事房屋检测、结构监测、工程检测和评估鉴定的第三方检测机构,具有*认可的CMA、CNAS等相关证书,拥有以博士、硕士领衔的*检测技术团队。公司下设房屋质量检测站、结构监测中心、工程检测部和评估鉴定部等部门,由*一级注册结构师、注册岩土工程师、教授级高级工程师等30+位工程师为你量身打造的检测方案,帮你节省近20%的检测费用,加快可以3-7天内出具相应的检测报告 。
结构健康监测- 结构性能评估: 在上述结构实测分析和结构理论分析的基础上,将不同时期(或不同工况下)的实测结果进行对比,以及将实测分析与理论分析的结果进行对比,可以明确结构工作状态的改变趋势以及当前的结构工作状态。 XX中心主塔楼结构工作状态的评估可以分为构件和结构两个层次。就构件层次而言,重点关注结构主要受力构件关键部位应变传感器测试的数据,将监测的数据输入的数据库之后,还需要根据结构设计分析结果,找到构件在设计荷载作用下的应力水平,或者构件达到极限承载力时的应力水平,以此可以直观实时显示结构的实际状况。由于单根构件或部分构件的失效往往并不会导致整个结构的破坏,为此还有必要对整体结构的实际工作状态进行评估。就结构层次而言,重点关注结构自振特性的指标,将不同时期实测结果进行对比,明确结构工作状态的变化趋势;将实测结果与更新的有限元模型基础上的模态分析结果进行对比,评定结构实际的工作状态。 在上述结构实际工作状态评估的基础上,就可以进行结构安全评定。结构安全评定分为确定性安全评定和基于可靠度理论的安全评定两种方法。河南码头风荷载监测评估资质 结构健康监测--结构响应监测 1.1 位移监测。 结构位移监测拟在塔楼主体结构的中心布置二个全球定位系统(GPS)。用于监测主体结构在风荷载以及可能产生的地震作用下的水平位移*值。沿塔楼高度方向,在关键楼层处布置倾角仪,用于监测房屋中心点处的水平位移,因此应布置在核心筒连续的竖向墙体上。同时结合加速度仪的布置,可以得到结构整体的实时响应,实时掌握结构的整体性状。 1.2 加速度监测。 结构动力特性是反映结构性状的一个*重要、*直接的性能指标。在关键楼层布置加速度仪不仅可以获得结构的自振周期、频率以及阻尼,而且可以实时记录结构在风荷载、地震荷载作用下结构的反应。对于高层建筑,前5阶反应及前15阶模态是*为重要的。因此,动力响应传感器数量及布置应能获取使用阶段状态下结构的前五阶X向平动、Y向平动和前三阶扭转,不少于15阶模态的周期、振型和阻尼比。 1.3 应力应变监测。 测量塔楼关键构件的应变,关键构件包括: 1) 伸臂桁架和环带桁架的关键部位的上弦、下弦和斜腹杆; 2) 典型层巨柱的钢骨、钢筋和混凝土,交叉斜撑与巨柱相连的应力复杂部位; 3) 典型层核心筒的角部暗柱、核心筒内埋钢板和混凝土的关键部位; 4) 典型层的角部暗柱钢骨、墙身钢筋和混凝土; 5) 巨柱间的交叉斜撑; 6) 特殊楼层的水平桁架、梁; 7) 穹拱及塔冠钢结构 。
桥梁结构健康监测的现状与发展方向:目前我国桥梁养护单位由于经济条件的制约,桥梁结构健康监测开展并不普遍,仅在徐浦大桥、南京长江第二大桥、润扬大桥等有一定影响的特大桥中采用,并且普遍存在着监测项目种类不足的情况。在监测数据的管理方面,没有一个较为完善的数据存储与管理系统,大量的监测数据得不到妥善的处理与利用。并且,现有的桥梁结构监测和状态评估系统大多属于单一的监测系统或者是单一的管理系统。随着经济的发展和管理部门对结构安全监测认识的进一步提高,桥梁健康监测技术将越来越趋向于普遍化、智能化、实时化、网络化。 普遍化,随着国内大型桥梁的不断建成,管理者对做好桥梁的运营、养护,随时了解桥梁结构的健康状况,及时对桥梁进行安全评价的要求日益迫切,并给与高度重视和经济支撑,使桥梁健康监测系统得以广泛应用。 智能化,通过开发和应用高性能智能传感设备,达到进行自感知、自适应、自诊断、自愈合和智能传输测试的目的。 实时化,能及时掌握桥梁工作状态,消除人工检测的滞后性和低效性。能准确判别桥梁安全性能、使用性能和资金使用效率之间的*化临界点,避免重大事故的出现和资源的浪费。 网络化,桥梁实时监测系统的网络化可以实现监测数据的共享,以便各地*对桥梁状态的评估,更可实现对远离城市桥梁的自动实时监测,实现良好的社会效益和经济效益 。
结构健康监测-施工过程标高监测 水平截面的倾斜度将直接影响结构的后续施工,应测量各控制截面监控点的标高以确保该截面的水平度。监控点的坐标测量也是本施工监控项目的重点。 1.1 监测控制网的建立 由于施工方已经建立了测量控制网,监控方在对测量控制网复核后,利用其外围控制网建立不同于施工方的内部网,以便将关键点的测量与施工方的结果进行比较。 在施工监控开始前,首先对施工方建立的施工平面控制网和高程控制网进行复测,高程和平面观测采用《建筑变形测量规程》中的二级变形测量精度指标,即:标高观测中观测点测站高差中误差不大于0.5mm;位移观测中观测点坐标中误差不大于3.0mm。高程基准网按《城市测量规范》中二等水准测量要求进行,采用精密水准仪,视线长度不大于50m,前后视距差不大于1.0m,任一测站前后视距累积差不大于3.0m。监控方在对测量控制网复核后,利用其外围控制网建立不同于施工方的监测控制网。以下各标高、坐标监测项目均是基于复测后的控制点进行。 1.2 监测时间和监测频率 水平度的测量须结合标高测量,并且在日出之前进行,以消除结构由于日照作用导致的不均匀温度分布所带来的影响。 由于核心筒与巨柱施工不同步,因此同一设计标高处的核心筒与巨柱施工是一前一后的,这就有可能导致标高不匹配的问题,从而使得连接核心筒和巨柱的伸臂桁架产生较大的内力,这对于结构是非常不利的,所以在进行标高监测时应确保同一区域内的巨柱和核心筒上的测点要同期实时观测,并及时记录对比。若出现标高不匹配的情况,可采取合适措施严格控制伸臂桁架的合拢时间,确保施工安全进行 。Kbdc2ql88
结构健康监测- 结构模态分析: 结构动力特性不仅与结构当前的工作状态有着密切的直接联系,而且也是进行结构模型修正的重要参考因素。结构自振频率、振型和阻尼比可以针对动力响应实测数据(加速度、速度以及位移传感器实测得到的振动信号)进行频谱分析获得。由于传感器测试的数据往往包含了周边环境噪声的成分,同时结构属于频率密集型结构,在此背景下,直接针对动力响应实测数据进行频谱分析,确保由此方法获得的结构模态特征参数的准确性就显得比较困难。 为此,除了采用FFT变换和功率谱法分析结构的频谱特性之外,还采用小波变换和Hilbert-Huang变换来分析结构的时频特征,小波变换和Hilbert-Huang变换可以从结构的振动信号中分离出较密集的结构自振频率。此外,由于噪声的影响,使每一次测试得到的结构频率和振型均存在一定的差别,为此,我们采用统计分析的方法确定结构的频率和振型的概率分布。 另外,由于安装过程在结构内部引起的自平衡的初始安装应力,温度变化在静定结构内部引起的温度应力等都会导致结构动力特性的变化。考虑初始安装应力的实际影响,通过施工过程的跟踪监测可以获知竣工结构内部的安装应力分布特征及规律,在此基础上基于动力响应实测数据的结构模态分析结果很可能与结构理论计算得到的结果不一致,由此进行的有限元模型修正可以保证计算模型能更真实的反映结构的实际工作状态。考虑温度变化的实际影响,在不同温度场下测试分析获得结构的自振频率,找到温度对结构频率影响的规律,从而在对有限元模型进行修正时,剔除温度的影响 。
结构健康监测--施工过程监测的内容: 1) 风荷载监测。 包括两部分内容,其一是指塔楼顶部在结构主体封顶至施工结束工程竣工阶段,针对建筑物所承受风荷载作用的监测。其二是指塔楼某部分在该部分施工结束至工程竣工期间内该部分建筑物在承受外部风荷载作用下的表面风压的监测。 2) 温度监测。 设置五个温度测量层,本项监测是指施工全周期内,测量层各测量点在该层施工完毕至工程竣工阶段,针对结构表面和结构体内温度变化的监测。 3) 位移监测。 是指建筑物各个关键位移控制点,包括塔体以及塔顶等,在该关键点施工完毕至全部结构竣工期间内,各施工阶段该关键点各向位移的监测。 此项监测采用两种方法分别进行: GPS以及倾角仪系统。各种方法的监测数据进行对比分析与融合。 4) 加速度监测。 主要是指结构在竣工投入使用后,各加速度监测点随在结构运营期间加速度响应的监测。动力响应传感器数量及布置应能获取使用阶段不同结构状态下结构的X向平动、Y向平动和扭转,周期、振型和阻尼比。传感器类型以加速度计为主、辅以必要的速度及位移传感器作为校核。 5) 应变监测。 是指施工全周期内,测量层各监测点在该层施工完毕至工程竣工阶段,针对结构构件随施工过程应力应变的监测。 6) 标高监测。 是指施工全周期内,针对塔体各层各关键点随施工过程结构标高的监测。 7) 垂直度监测。 是指施工全周期内,针对塔体各关键点随施工过程垂直度的监测。 8) 沉降监测。 是指施工全周期内,针对塔楼基础以及塔体各关键点随施工过程沉降的监测 。
芜湖桥梁构件应力应变监测诊断报告:http://www.testmart.cn/Home/News/data_detail/id/711994859.html