浙江建筑构件应力应变监测评估资质
承接所有地区检测鉴定业务/诚招城市合伙人
随着桥梁设计使用年限的提高,在服役期内,受环境侵蚀、材料老化和荷载的长期效应等灾害因素的共同影响,会导致结构的损伤积累和抗力衰减,从而降低正常载的能力,极端情况下易引发灾难性的突发事故。而我们普遍采用的桥梁经常和定期检查在技术上和时间周期上存在着较大的局限性,日渐不能满足桥梁目常养护所需,这就要科学的引入桥梁结构健康检测系统。 桥梁结构健康监测的概念:桥梁健隶监测是通过对桥梁结构状态的监控与评估,在桥梁运营状况异常时触发预警信号,为桥梁维护维修与管理决策提供依据和指导。它是一种桥梁病害实时的、自动的检测和识别系统。包括传感器子系统、数据采集子系统、信号传输子系统、损伤识别以及安全评定子系统、数据管理子系统,通过系统集成技术将它们集成为一个协调共同工作的健康监测系统。 桥梁结构健康监测的目的和意义:自20世纪50年代以来,桥梁健康监测的重要性就逐渐被认识,但受检测、监测手段落后的限制,在应用上一直未得到推广和重视。近年来,国内大桥坍塌或者局部破坏事故频发,在很大程度上是由于桥梁构件在荷载作用下疲劳破坏,加之养护监测不当,致使承重结构遭到破坏,引发坍塌,带来不可估量的经济涢失。 桥梁结构健康监测是为了保证桥梁安全畅通、避免突发严事故,它是以科学的监测理论与方法为基础,采用各种适宜的检測手段获取数据,通过对结构的主要性能指标和特性进行分析,及早预见、发现和处理桥梁结构安全隐患和耐久性缺陷,诊断结构突发损伤发生位置与程度,并对发生后果的可能性进行判断与。桥梁结构健康监测,能使桥梁运营状况异常时发出预警信号,在桥梁维护、维修,防止桥梁坍塌、局部破坏,保障和廷长桥梁的使用寿命方面有着重要的意义 。浙江建筑构件应力应变监测评估资质
通际质量检测(上海)有限公司是*从事房屋检测、结构监测、工程检测和评估鉴定的第三方检测机构,具有*认可的CMA、CNAS等相关证书,拥有以博士、硕士领衔的*检测技术团队。公司下设房屋质量检测站、结构监测中心、工程检测部和评估鉴定部等部门,由*一级注册结构师、注册岩土工程师、教授级高级工程师等30+位工程师为你量身打造的检测方案,帮你节省近20%的检测费用,加快可以3-7天内出具相应的检测报告 。
通际质量检测的服务优势在于以更短的检测周期和更低的服务价格,为客户节约成本和周期,帮助客户快速获取准确有效数据,并为客户提供后期技术服务支持。通际检测作为平台化运营,与国内外多家实验室建立了良好的合作关系,旨在为客户、行业提供更全面、更的检测咨询服务,欢迎联系咨询 。
目前我国土木工程事故频繁发生,如桥梁的突然折断、房屋骤然倒塌等,地震、洪水、暴风等自然灾害也对建筑物和结构造成不同程度的损伤;在Northridge和1995年日本神户(Kobe)的大地震中,一些建筑物在遭受主震后并未立即倒塌,但结构却已受到严重损伤而未能及时发现,在后来的余震中倒塌了。还有一些人为的爆炸等破坏性行为,如美国世贸大褛倒塌对周围建筑物的影响,这些都造成了重大的人员伤亡和财产损失,而且已经引起人对于重大工程安全性的关心和重视、对结构性能进行监测和诊断,及时地发现结构的抗伤,对可能出现的灾害进行预测,评估其安全性已经成为未来工程的必然要求,也是木工程学科发展的一个重要领域。 健康监测系统及其组成:一般认为健康监测系统应包括下列几部分: 传感器系统,包括感知元件的选择和传感器网络在结构中的布置方案。 数据采集和分析系统,一般由强大的计算机系统组成。 监控中心,能够及时预测结构的异常行为。 实现诊断功能的各种软硬件,包括结构中损伤位置、程度类型识的*判据。 传愿器监测的实时信号通过信号采集装置送到监控中心,进行处理和判断,从而对结构的健康状态行评估,若出现异常,由监控中心发出预警信号,并由故障诊断模块分析查明异常原因,以便系统安全可地运行 。浙江建筑构件应力应变监测评估资质 倾斜仪通常用于测量结构主要竖向承重构件(核心筒、剪力墙等与结构整体变形相一致的构件)竖向的倾角变化。它的主要优点不仅可以计算获得结构顶端水平位移,还能获得高层结构中心线沿竖直方向的倾角变化。主要用于结构在强风强震下的各楼层层间位移的实时监测,其结果可以清晰、快速有效地反应结构的主体性能。 在施工阶段,特别是结构处于较低高度(小于200米)时,结构水平位移相对较小,结构外围幕墙体系尚未完全建立,其结构性状与使用期间结构性状不同。因此监测的要求和目标也不同。由于施工中施工设备、施工机具、施工工艺等的不同,以及条件限制,一般情况下不进行水平位移的实时监测。当结构,特别是混凝土核心筒上升到200米以上,在大风期间应进行核心筒的水平位移实时监测,以获得塔楼的相关数据,为核心筒中塔吊的正常工作以及相关高空作业积累经验和数据,同时为不同高度、不同风荷载下正常施工、高空正常作业积累经验和数据。 在已建的子站的核心筒中心的剪力墙上合理设置倾斜仪,一般一个测区布置X向和Y向两台倾斜仪,分别布置在两道剪力墙上,通过数据采集、传输与处理技术相结合,形成倾角仪-数据采集系统-数据处理系统-终端输出系统,实现高层建筑结构在强风强震下的侧向位移的动态监测 。
结构健康监测--施工过程位移监测(GPS部分): 位移监测的目的在于掌握塔楼结构的几何变化,研究塔楼的水平位移与环境变化(如温度和风)的关系。结构水平位移特别是顶部的水平位移对结构的稳定性起着至关重要的作用,影响结构的安全。所以施工过程中水平位移监测是一个重要环节,应确保结构的水平位移在规范要求的范围内。 根据《高层建筑混凝土结构技术规程(JGJ3—2010)》,高度大于250米的高层混合筒体建筑,按弹性方法计算的楼层层间*位移与层高之比不宜大于1/500。 对加速度信号积分,可以得到结构的动位移。至于如何得到结构的*位移(包括静位移、动位移和不均匀沉降),采用普通的监测手段将遇到选择参照物的困难。当前发展起来的全球定位系统(GPS)可以很好地解决该问题。 GPS的基本定位原理是:卫星不间断地发送自身的星历参数和时间信息,用户接收到这些信息后,经过计算求出接收机的三维位置、三维方向和时间信息。GPS技术具有精度高、速度快、全天候、连续、同步、全自动,且能同时获得3维坐标等优点。在本项目中,将采用全球定位系统来测量结构在风作用下的位移 。
高层建筑自振频率低,即自振周期长,通过利用高灵敏度的传感器、放大器及记录设备,借助于随机信号数据处理的技术,量测环境激励(风荷载)结构物的响应,并分析确定结构物的动力特性。 对XX中心这样的高层建筑结构,其在动力荷载作用下的振动加速度峰值分布呈现上大下小的趋势,考虑舒适性监测要求,加速度测点将布置在结构的中上部。以结构参数识别为目的的加速度传感器布置原则为:依据对结构特性影响*的振型布设,尽量布设在振型峰值点,避开节点,基于传感器*布设理论选择测点。 因为高层建筑结构的*振型的极值点正是结构的顶部,因此,以结构舒适度为目的的布点原则和以结构参数识别为目的的布点原则可以统一到以结构参数识别为目的的布点原则。基于传感器*布设理论,为了反应主塔楼在施工阶段与运营阶段不同状态下结构的X向平动、Y向平动、扭转的周期、振型及阻尼比,主塔楼上的加速度传感器布置在10个加强层上,每层布置4个测点。 为了使每个楼层位置测量得到的结构振动加速度能够真正代表楼层的振动,将传感器的测点选择在结构楼层平面的中心点。在该位置点,沿结构两个正交方向的振动主轴布置两个QZ2013 型力平衡加速度计,体的加速度传感器数量为40个 。Kbdc2ql88
结构健康监测--施工过程风压监测: 结构上的风荷载,*终以风压的形式作用在结构上,因此针对风压的监测具有重要的意义。施工期间由于玻璃幕墙结构没有完全施工完毕,因此风压的监测只针对已经完工的玻璃幕墙部分进行。 1.1 测点布置。 施工期间由于玻璃幕墙结构没有完全施工完毕,因此风压的监测只针对已经完工的玻璃幕墙部分进行。风压的测点布置,拟选择具有代表性的3层,分别为36层、66层、118层。平面布置则每层布置不少于12个测点,合计不少于36个测点。 1.2 监测时间和监测频率。 在相应测点布置位置处施工完成后,遇大风天气进行监测。并初步以7m/s为风速监测的控制风速标准。 1.3 监测系统布置。 风压监测系统由压力探头、微差压传感器、数据采集设备组成。风压传感器的信号类型为直接电压输出,其有效传输距离可达1000m,因此,可以直接接入数据采集卡。其信号传输介质为普通单芯屏蔽电缆。 1.4 传感器安装。 高层建筑风压属于微压范畴,且具有脉动风压的特征。因此,压力传感器宜选用微压量程、具有可测正负压的压力传感器。微差压传感器安装在玻璃幕墙内侧。但是其传感器探头必须垂直于玻璃幕墙面安装在外侧,探头与微差压传感器通过具有抗老化的软管连接,同时微差压传感器的另一个探头则布置在室内。因此必须在探头安装保护罩,保护罩底部开有前腔排水孔以避免前腔水压的影响。信号及电源线采用4芯扁排线,背压腔参考压力管采用1.8mm医用硬塑胶管,整个传输线可无阻碍地通过幕墙窗的密封垫进入室内 。
结构健康监测--结构响应监测 1.1 位移监测。 结构位移监测拟在塔楼主体结构的中心布置二个全球定位系统(GPS)。用于监测主体结构在风荷载以及可能产生的地震作用下的水平位移*值。沿塔楼高度方向,在关键楼层处布置倾角仪,用于监测房屋中心点处的水平位移,因此应布置在核心筒连续的竖向墙体上。同时结合加速度仪的布置,可以得到结构整体的实时响应,实时掌握结构的整体性状。 1.2 加速度监测。 结构动力特性是反映结构性状的一个*重要、*直接的性能指标。在关键楼层布置加速度仪不仅可以获得结构的自振周期、频率以及阻尼,而且可以实时记录结构在风荷载、地震荷载作用下结构的反应。对于高层建筑,前5阶反应及前15阶模态是*为重要的。因此,动力响应传感器数量及布置应能获取使用阶段状态下结构的前五阶X向平动、Y向平动和前三阶扭转,不少于15阶模态的周期、振型和阻尼比。 1.3 应力应变监测。 测量塔楼关键构件的应变,关键构件包括: 1) 伸臂桁架和环带桁架的关键部位的上弦、下弦和斜腹杆; 2) 典型层巨柱的钢骨、钢筋和混凝土,交叉斜撑与巨柱相连的应力复杂部位; 3) 典型层核心筒的角部暗柱、核心筒内埋钢板和混凝土的关键部位; 4) 典型层的角部暗柱钢骨、墙身钢筋和混凝土; 5) 巨柱间的交叉斜撑; 6) 特殊楼层的水平桁架、梁; 7) 穹拱及塔冠钢结构 。
太仓桥梁结构健康监测周期时间:http://www.testmart.cn/Home/News/data_detail/id/712000465.html