西安码头构件应力应变监测诊断报告
承接所有地区检测鉴定业务/诚招城市合伙人
西安码头构件应力应变监测诊断报告 。
结构健康监测--施工过程风速监测: 为了获得结构在风作用下响应的关键输入作用,进行风速的观测是至关重要的。施工阶段的风速监测不仅可以获得关键大风天气的风荷载的输入,也可以为结构性状的了解与结构响应的分析提供重要的参数。 由于风速是一个复杂的随机过程,对于风速的观测一般需要了解三个方向的风速输入,因此针对风速的监测拟采用三维超声风向风速仪和机械风向风速仪。施工阶段由于结构高度在不断变化之中,因此测点的位置也随之不断变化。在有大风来临时,将测点布置在结构*点。 在施工阶段,为了保证测试数据的度,两种类型的风速仪将考虑安装在施工塔吊的顶部,获取大风条件下主塔楼所在位置的风速、风向、湍流度、阵风因子、湍流积分尺度、湍流功率谱等边界层特性。 大风的监测与其他类型的监测不同,只有大风来临时对风进行实时监测才具有实际意义。因此对于施工阶段的风速监测采取有大风气候时进行观测,并初步以7m/s为风速监测的控制风速标准。 施工期间风速仪采用临时太阳能电池或蓄电池供电,采用相应数据采集设备进行数据的动态采集。风速仪有两种信号输出方式,一种为直接电压输出,另一种为直接输出RS-485数字信号;由于前者需要外部激励电源,因此,本方案采用RS-485 总线传输方式,因这种传输方式*远传输距离可达1200m。因此确定风速仪的设置位置距离数据采集设备的距离不宜过1200m。 设备的安装采用临时风速安装支架,固定在施工*位置处。需要在施工位置*位置处设置预埋件以固定风速安装支架 。
本项目采用1+2型GPS 监测方案,即一个固定站(基站)和二个移动站。当结构施工到相应监测楼层时,在结构刚度中心及角部各布置两个移动站,用来测试结构的整体水平位移。由于结构的运动除了两个方向的水平平动外还可能有绕中心的扭转,根据两个测点的测试结果可以计算出结构的扭转相应。 固定站的安装标准要求很高,需要选择距离移动站600m之内一个开阔场地采用挖坑深埋方式布设固定站,作为移动站的差分参考。如果工地现场的条件不够,可以考虑直接采用当地政府的大地监测网络基准站,通常他们具有更高的安装精度,一般数据的获得需要付费。 移动站安装在结构上之后,结构一直在振动,因此,移动站的零点选择也是比较困难的。零点的可以采用如下步骤实现:振动位移可以通过加速度计和激光位移计,通过振动台给出不同频率和振幅的振动,然后由测到的GPS振动位移与加速度计和激光位移计测到的振动位移相比,从而验证GPS测定振动位移的精度。用同样的方法,通过激光位移计测到的平动位移(平均位移)验证GPS的平均位移精度。 由于本结构高,建筑地面的 GPS 参考站信号会被周围建筑阻挡;因此本项目拟在塔楼开阔场地不动点处布置1个GPS参考站,其与2个GPS流动站组成一个完备的GPS 观测环路,以提高GPS观测的可靠性,GPS在平面的布置点如图 6.5?4。当结构施工到相应监测楼层时,在所监测楼面中心处和外筒各布置一台GPS观测站监测结构的水平方向位移。结构的测试楼层主要为10个加强层。由于结构的运动除了两个水平方向平动外还可能有绕中心的扭转,根据中心点和外筒测量得到的运动可以计算出结构的扭转 。西安码头构件应力应变监测诊断报告 结构健康监测--施工过程风速监测: 为了获得结构在风作用下响应的关键输入作用,进行风速的观测是至关重要的。施工阶段的风速监测不仅可以获得关键大风天气的风荷载的输入,也可以为结构性状的了解与结构响应的分析提供重要的参数。 由于风速是一个复杂的随机过程,对于风速的观测一般需要了解三个方向的风速输入,因此针对风速的监测拟采用三维超声风向风速仪和机械风向风速仪。施工阶段由于结构高度在不断变化之中,因此测点的位置也随之不断变化。在有大风来临时,将测点布置在结构*点。 在施工阶段,为了保证测试数据的度,两种类型的风速仪将考虑安装在施工塔吊的顶部,获取大风条件下主塔楼所在位置的风速、风向、湍流度、阵风因子、湍流积分尺度、湍流功率谱等边界层特性。 大风的监测与其他类型的监测不同,只有大风来临时对风进行实时监测才具有实际意义。因此对于施工阶段的风速监测采取有大风气候时进行观测,并初步以7m/s为风速监测的控制风速标准。 施工期间风速仪采用临时太阳能电池或蓄电池供电,采用相应数据采集设备进行数据的动态采集。风速仪有两种信号输出方式,一种为直接电压输出,另一种为直接输出RS-485数字信号;由于前者需要外部激励电源,因此,本方案采用RS-485 总线传输方式,因这种传输方式*远传输距离可达1200m。因此确定风速仪的设置位置距离数据采集设备的距离不宜过1200m。 设备的安装采用临时风速安装支架,固定在施工*位置处。需要在施工位置*位置处设置预埋件以固定风速安装支架 。
随着桥梁设计使用年限的提高,在服役期内,受环境侵蚀、材料老化和荷载的长期效应等灾害因素的共同影响,会导致结构的损伤积累和抗力衰减,从而降低正常载的能力,极端情况下易引发灾难性的突发事故。而我们普遍采用的桥梁经常和定期检查在技术上和时间周期上存在着较大的局限性,日渐不能满足桥梁目常养护所需,这就要科学的引入桥梁结构健康检测系统。 桥梁结构健康监测的概念:桥梁健隶监测是通过对桥梁结构状态的监控与评估,在桥梁运营状况异常时触发预警信号,为桥梁维护维修与管理决策提供依据和指导。它是一种桥梁病害实时的、自动的检测和识别系统。包括传感器子系统、数据采集子系统、信号传输子系统、损伤识别以及安全评定子系统、数据管理子系统,通过系统集成技术将它们集成为一个协调共同工作的健康监测系统。 桥梁结构健康监测的目的和意义:自20世纪50年代以来,桥梁健康监测的重要性就逐渐被认识,但受检测、监测手段落后的限制,在应用上一直未得到推广和重视。近年来,国内大桥坍塌或者局部破坏事故频发,在很大程度上是由于桥梁构件在荷载作用下疲劳破坏,加之养护监测不当,致使承重结构遭到破坏,引发坍塌,带来不可估量的经济涢失。 桥梁结构健康监测是为了保证桥梁安全畅通、避免突发严事故,它是以科学的监测理论与方法为基础,采用各种适宜的检測手段获取数据,通过对结构的主要性能指标和特性进行分析,及早预见、发现和处理桥梁结构安全隐患和耐久性缺陷,诊断结构突发损伤发生位置与程度,并对发生后果的可能性进行判断与。桥梁结构健康监测,能使桥梁运营状况异常时发出预警信号,在桥梁维护、维修,防止桥梁坍塌、局部破坏,保障和廷长桥梁的使用寿命方面有着重要的意义 。
XXXX中心位于XX滨江商务核心区域,地理位置优越,是新一轮城市发展的重点区域。XXXX中心由1栋主塔楼、1栋办公辅楼、1栋公寓辅楼及裙楼组成。其中,主塔楼建筑面积约为40万平方米,高度过606米以上,地上125层,地下6层,是一幢集办公、酒店、公寓等多功能于一体的高层建筑,一个塔冠和穹拱位于塔楼顶部,凸显塔楼的建筑风格。建成后的XXXX中心将是华中*高楼,成为XX市的标志性建筑。 为了有效地承担水平力(风荷载和地震荷载),XXXX中心主塔楼采用核心筒+外伸桁架+(外周)巨型框架结构体系(如图1.1-1所示),包括强大的组合剪力墙、微倾的巨型SRC组合柱和曲线型的环带桁架,形成了多道设防的布置特征。结构构件的位置和几何形状都经过了精心地优化以满足强度、刚度和稳定性的要求,同时与建筑设计达到*的结合。 为实现XXXX中心大厦全生命周期不同阶段的结构性能监测,结构健康监测系统包括施工阶段监测系统及使用阶段监测系统。施工阶段性能监测系统的设计充分考虑了与使用阶段性能监测系统的相关性,各类传感器的布置在满足施工监测系统的要求下兼顾了结构使用阶段性能监测系统的要求。 结构健康监测系统的建立参考以下资料: 《岩土工程勘察规范》 (GB50021-2001,2009年版); 《建筑抗震设计规范》 (GB50011-2010); 《工程测量规范》 (GB50026-2007); 《建筑变形测量规范》 (JGJ8-2007); 《全球定位系统(GPS)测量规范》 (GB/T 18314-2009); 《建筑结构可靠度设计统一标准》(GB50068-2001); 《建筑结构荷载规范》(GB50009-2012); 《钢结构设计规范》(GB 50017-2003); 《公共建筑结构监测技术规范》(征求意见稿); 施工包单位的施工组织计划; 甲方提供的图纸及其他相关资料 。
本项目采用1+2型GPS 监测方案,即一个固定站(基站)和二个移动站。当结构施工到相应监测楼层时,在结构刚度中心及角部各布置两个移动站,用来测试结构的整体水平位移。由于结构的运动除了两个方向的水平平动外还可能有绕中心的扭转,根据两个测点的测试结果可以计算出结构的扭转相应。 固定站的安装标准要求很高,需要选择距离移动站600m之内一个开阔场地采用挖坑深埋方式布设固定站,作为移动站的差分参考。如果工地现场的条件不够,可以考虑直接采用当地政府的大地监测网络基准站,通常他们具有更高的安装精度,一般数据的获得需要付费。 移动站安装在结构上之后,结构一直在振动,因此,移动站的零点选择也是比较困难的。零点的可以采用如下步骤实现:振动位移可以通过加速度计和激光位移计,通过振动台给出不同频率和振幅的振动,然后由测到的GPS振动位移与加速度计和激光位移计测到的振动位移相比,从而验证GPS测定振动位移的精度。用同样的方法,通过激光位移计测到的平动位移(平均位移)验证GPS的平均位移精度。 由于本结构高,建筑地面的 GPS 参考站信号会被周围建筑阻挡;因此本项目拟在塔楼开阔场地不动点处布置1个GPS参考站,其与2个GPS流动站组成一个完备的GPS 观测环路,以提高GPS观测的可靠性,GPS在平面的布置点如图 6.5?4。当结构施工到相应监测楼层时,在所监测楼面中心处和外筒各布置一台GPS观测站监测结构的水平方向位移。结构的测试楼层主要为10个加强层。由于结构的运动除了两个水平方向平动外还可能有绕中心的扭转,根据中心点和外筒测量得到的运动可以计算出结构的扭转 。Kbdc2ql88西安码头构件应力应变监测诊断报告
。
结构健康监测--荷载及作用监测: 1.1地震作用监测。 通过在塔楼设置两台强震仪获得塔楼的平动地震动输入,以进行地震作用监测。一台强震仪放置于塔楼基础大底板的中央,一台强震仪放置在主体结构顶层的中心,用于自动记录地震在基础以及塔楼顶部的三个分量上的振动。第三台强震仪可放在周边的自由场上。 如果该地区自由场上已布置强震仪,且可以根据需求提取得到数据,可以考虑共用自由场的强震仪,这样可以合理利用资源。地震作用监测应与结构的地震响应监测相结合,以建立起有效的荷载-响应关系,以及地震作用后结构的损伤识别及健康性态评估。 1.2 风荷载监测。 布置风速监测传感器获得塔楼顶部不同方向的来流风速和风向数据。至少共配备2台风速仪(一台机械式,一台超声式)进行风速的监测。在建筑立面,应考虑沿建筑高度方向均匀设置适当数量的风压测量装置。风荷载监测应与结构的风致响应监测相结合,以建立起有效的荷载-响应关系,实现施工过程的结构应有姿态判别、强风灾害的预警,以及风荷载作用下结构的损伤识别及性态评估。 1.3 温度监测。 观测塔楼环境的温度变化,包括日温度变化和季节温度变化。沿建筑物立面高度设置5个测量区,用以测量不同建筑高度的温度分布与变化;并且测点沿建筑的平面四周布置,用以测量不同建筑立面情况下的温度分布与变化 。