严格地讲,流量仪表的离线结果只能说明其在条件下的计量特性,大多数的实际使用现场环境条件、仪表的安装条件和操作条件与条件相比有很大不同,这样会给流量仪表带来附加误差,而附加误差大小是以一定的经验主观判断的,所以离线对于流量测量结果要求不高,或者说即使有附加误差也能满足预期的测量要求,不失为一种简单易行的选择。对物性参数影响的修正程度不同几乎所有流量测量仪表的测量结果都受到被测介质有关物性参数的影响,只是影响程度不一样。

PV063R1K1T1NFR1
PV063R1K1T1NFHS
PV063R1K1T1NMM1
PV063R1K1T1NMRC
PV063R1K1T1NFWS
PV063R1K1T1NFRC
PV063R1K1T1NFF1
PV080L1K1T1NFFC
PV080R1K1B1NSLB
PV080L1K1T1NFHS
PV080R1L1T1MULC
PV080R1K1A1NFWS
PV080R1K1T1NFRL
PV080R1K1T1NGLA
PV080R1K1T1NMMC
PV080R1L8L3NULC
PV080R1L8T1NULC
PV092R1K8T1N001
PV092R1K1T1NFRZ
PV092R1K1T1NMM1
PV092R1K1T1NMRK
PV092R1K4T1NFHS
PV092R1K1T1NKLC
PV092R1K1T1VMMC
PV092R1L1T1WTCC
PV092R1K1T1NF
PV092R1D1T1NMMC
PV092R1K1T1NGLC
PV092R1K1T1NMF1
PV092R1K1T1WFR1
PV092R1K1T1NULZ
PV092R1K1T1NHLC

PV092R1K1T1NFFC
PV092R1K1A1NFWS
PV092R1K1T1NFHS
PV092R1K1T1NFF1
PV092R1K1T1NFWS
PV092R9K1T1NMMC
PV092R1K1T1NFR1
PV092R9K1T1NFWS
PV092R1K1T1N001
PV092R1K1T1EMMC
PV092R1K1S1NFWS
PV092R1K4T1NMR1
PV092R1L1L3WTCC
PV092R1K1T1NUPM
PV092R1K8T1NMMC
PV092R1K1T1VFDS
PV092R1K1T1NMRC
PV092R1K1T1WMM1
PV092R1K1T1PFDS
PV092R1K1T1WMRC
PV092R1K1A1NMMC
PV092R1K1T1NMMC
PV092R1K8T1VMMC
PV092R1K1T1NMMK
PV092L1K1T1NFWS
PV092R1K1T1NFDS
PV092R1K1T1NKLA
PV092L1K1T1NMMC
PV092R1K4T1NFR1
PV092R1K1T1NMFC
PV092R1K1T1N100
PV092R1K8T1NFWS
PV092R1K1JHNMMC
PV092R1K4T1NMMC
PV092R1K1A4WFRZ
PV092R1K1AYNMRZ
PV092R1K1T1WFDS
PV092R1K1T1NFRC
PV092R1K1T1NHCC
PV092R1D1T1VMMC
PV092R1K1T1NMRZ
PV092R1K1T1WMR1
PV092R1K1T1WMMC
PV092R1K1T1NMR1
PV092R1L1T1NMMC
PV092R1K1T1NFFP

PV092L1K1T1N001
PV092R1D1T1NGLC
PV092R1K1T1NMLA
PV092R1K4T1NFPD
PV092R1L1T1NFPD
PV092L1K1J1NFR1
PV092R1K1A1NSLA
PV140R1K1T1NFRL
PV140L1K8T1NSLC
PV140R1K1T1NTCB
PV140R1L1A1NF
PV140L9G3B1NTCC
PV140R1K1T1NWLA
PV140R1K1T1NSCA
PV140R1D3T1VFHS
PV140L1G1T1NFFP
PV140L1K1T1NFFC
PV140L1K1T1NFFP
PV140L1K1T1NFWS
PV140L1L1T1NWCC
PV140R1D1T1NFFC
PV140R1F1T1NFHS
PV140R1F1T1NYCC
PV140R1F3T1NFFC
PV140R1F3T1NFRP
PV140R1G1T1VFFC
PV140R1K1A1NSCC

PV140R1K1B1NFWS
PV140R1K1B1NUPG
PV140R1K1T1NFDS
PV140R1K1T1NFFC
PV140R1K1T1NFFD
PV140R1K1T1NFFP
PV140R1K1T1NFF1
PV140R1K1T1NFHS
PV140R1K1T1NF
PV140R1K1T1NFRC
PV140R1K1T1NFRD
PV140R1L1T1NUPG
PV140R1L1T1NWCC
PV140R1L4T1NUPG
PV140R1K1T1NMMC
PV140R1K1T1NMRK
PV140R1K1T1NMRZ
PV140R1K1T1NULC
PV140R1K1T1NWCC
PV140R1K1T1NWLC
PV140R1K1T1WMMC
PV140R1L1T1NMMC
PV140R9K1T1NUPZ
PV140R9L1LKNWCC
PV140R9K1A1NSLCK0173
PV140R9K1T1NFDSK0186
PV140R9K1T1NFFCK0011
PV140R9K1T1NFHSK0017
PV140R9K1T1NFRCK0107
PV140R9K1T1NFWSK0032
PV140R9K1T1NFWSK0155
PV140R9K1T1NKCCK0175
PV140R9K1T1NMLCK0081
PV140R9K1T1NSLCK0003
PV140R9K1T1WSCCK0072
PV140R9K4T1NFFPK0088
PV140R9K4T1NZCBK0154
PV140R9K4T1WFRPX5918
PV140L9G1T1NFFPK0083
假如我们同时在用两路通道进行测试,通道1与通道2之间的信号是否会互相干扰?干扰的程度有多大?将这些问题量化,就可以理解通道隔离度了。如何对通道隔离度进行测试?根据数字存储示波器通用规范规定,首先设置示波器干扰通道垂直灵敏度为较大档,设置被干扰通道垂直灵敏度为*易受干扰档级,并将输入端。我们将通道1(干扰通道)垂直档位调节至500mV/div,通道2(被干扰通道)垂直档位调节至2mV/div,并将通道2输入端悬空。