理化类仪器校准:可调移液器、常用玻璃量器(量筒、烧杯、容量瓶等)、pH计、密度计、波美计、白度计、声级计、照度计、光泽度计、旋转粘度计、紫外分光光度计、原子吸收分光光度计、色差仪、电位滴定仪、X射线荧光光谱仪(ROHS检测仪)、电导率仪、气相色谱仪、液相色谱仪、频闪仪、透光率仪、木材水分测湿仪、标准光源箱等.

余杭区仪器校正机构CNAS(图1)
气相色谱仪是一种分离测定低沸点混合组分的重要仪器,可供化工、生物工程、食品*作仪器分析实验用,也可用于科研及常规分析。
原理是混合气体中的各种成分通过色谱柱的速度不同。分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。它是带状光谱,反映了分子中某些基团的信息。可以用标准光谱图再结合其它手段进行定性分析。
根据Lambert-Beer定律:A=εbc,(A为吸光度,ε为摩尔吸光系数,b为液池厚度,c为溶液浓度)可以对溶液进行定量分析。
配制溶液-在光谱检测项下进行-调整检测光谱范围及速度--扫描光谱图--吸光度处对应波长为吸收波长,吸光度小处对应的波长为小吸收波长。性能特点
1、一目了然的显示画面
大屏幕显示器,实现中文菜单式对话,使得显示更明了,操作更简单。可显示程升曲线和基流电平,在一屏画面内同时显示柱箱、进样器、检测器等的温度设定值和实际值,能提供更为丰富多彩的仪器信息。

余杭区仪器校正机构CNAS(图2)
功率的增大以及形状因数的变小迫使工厂摈弃成熟的线性稳压器方案,转而采用开关稳压器方案。而采用开关稳压器又产生了新的挑战。由于电感器要求使用额外的区域,因此开关稳压器形状因数较大。必须考虑稳压器开关频率与测量信号频率之间的关系。转换器的布局更加关键。设计不良的开关稳压器会提高本底噪声,并产生不必要的电磁兼容性(EMC),将会干扰小型信号的检测。幸运的是,我们目前提供了集成电感器DC/DC开关稳压器,可以限度地减少此类挑战。1共模干扰共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O器件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。2差模干扰差模干扰是指作用于信号两极间的干扰电压,又叫串模干扰,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰直接叠加在信号上,直接影响测量与控制精度。
2、数字化的载气流量监测系统
GC5400气路系统可选配新的数字化流量监测单元,通过屏幕显示载气流量、毛细管分流流量值,多可显示四组流量,且流量参数可自动存储,便于分析条件的记录和调用。方便了分流调节与分流比计算,无需使用皂膜流量计。
3、*的微机系统,*的控制功能
a)性能*的微机温度控制系统,采用了*的制造技术,控温高(优于±0.05℃)、可靠性高、抗干扰能力强;具有6个独立的控温区,控制温度达400℃;极限温度设定及过温保护功能,确保仪器的安全运行。
b)全中文键盘设定各种控制和使用参数(包括检测器操作参数),逻辑性强,容易操作;机内具有自诊断、断电保护、检测器设定、量程,极性和电流设置与显示等功能,可准确显示各路温控设定值、实际值、保留和分析时间等。
无线充电,就像科幻电影中的黑科技一样,充满了奇幻与未知。如今,这一技术正逐渐进入人们的视觉:无线充电的台灯、无线充电的电动汽车和即将无线充电的Iphone8……无线充电到底是如何实现的,又该如何测试呢?无线充电的普及可以说得益于电动汽车产业的快速发展,因为,给电动汽车充电有线充电桩占地面积大、操作复杂、磨损率高等问题始终困扰着电动汽车的用户们。这才推动了无线充电技术的快速发展,本文主要针对电动汽车的无线充电做对应解析与分享。

余杭区仪器校正机构CNAS(图3)
4、高性能大容量柱箱
大容量柱箱可方便安装且能同时容纳毛细管柱和双填充柱;柱箱具有快速加热和快速降温即自动后开门结构(7min以内从300℃降至50℃),且可实现准室温控制,柱箱程序升温10阶11平台(通过控制软件在计算机显示,主机显示7阶8平台)。
常规电源只能为负载提供一个正向的输出电压和电流,即工作在象限。也有一些应用,特意将输出反接,作为一个负向电源静态地工作在第三象限。但常规电源既不能工作在第二象限作为负电源的可调负载,也不能工作于第四象限对电池进行放电测试等。极少数的一些双象限电源虽然可以在正负电流间切换,但中间会存在短暂的跳变和不连贯现象等。艾德克斯IT65C系列是一款大功率高精度的直流电源即可在电流的正负快速无缝切换,实现电流双象限工作。
5、灵活的进样系统,满足各种分析要求
仪器可同时安装多达三个进样器,根据分析要求,仪器可选择进样器组合,且各单元可独立控温,进样器拆装简单。

余杭区仪器校正机构CNAS(图4)
单填充柱/双填充柱进样器:
可实现填充柱柱头进样方式,适用多种色谱柱;增加六通阀进行气体进样分析;在填充柱进样器中使用连接件,可简便地完成0.53宽口径毛细管柱分析。
提供3种毛细管柱进样系统,均可适用于各种规格的毛细管柱:
a)使用联接件在双填充柱进样器上改装成毛细管柱进样器,背压阀分流调节;
b)毛细管柱进样器,具有隔膜吹扫和背压阀分流调节。
光纤光栅传感器可以检测的建筑结构为桥梁。应用时,一组光纤光栅被粘于桥梁复合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽中。如果需要更加完善的保护,则是在建造桥时把光栅埋进复合筋。同时,为了修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFPI),利用低相干性使干涉的相位噪声化,这一方法实现了高灵敏度的动态应变测量。
灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是向量,则要求传感器的交叉灵敏度越小越好。