威格士电磁换向阀的流量特性一般都指的是哪些重要参数
威格士电磁换向阀运转时高速旋转产生的离心力,会抑制介质的泄漏。因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。引起摩擦副密封失效的因素主要有:
(l)操作中,因抽空、气蚀、憋压等异常现象,引起较大的轴向力,使动、静环接触面分离;(对安装机械密封时压缩量过大,导致摩擦副端面严重磨损、擦伤;
(3)动环密封圈过紧,弹簧无法调整动环的轴向浮动量;
(4)静环密封圈过松,当动环轴向浮动时,静环脱离静环座;
(5)工作介质中有颗粒状物质,运转中进人摩擦副,探伤动、静环密封端面;
(6)设计选型有误,密封端面比压偏低或密封材质冷缩性较大等。上述现象在试运转中经常出现(公众号:泵管家),有时可以通过适当调整静环座等予以消除,但多数需要重新拆装,更换密封。
3.由于两密封端面失去润滑膜而造成的失效
a)因端面密封载荷的存在,在密封腔缺乏液体时启动泵而发生干摩擦;
b)介质的低于饱和蒸汽压力,使得端面液膜发生闪蒸,丧失润滑;
c)如介质为易挥发性产品,在机械密封冷却系统出现结垢或阻塞时,由于端面摩擦及旋转元件搅拌液体产生热量而使介质的饱和蒸汽压上升,也造成介质压力低于其饱和蒸汽压的状况。
4.由于腐蚀而引起的机械密封失效
a)密封面点蚀,甚至穿透。
b)由于碳化钨环与不锈钢座等焊接,使用中不锈钢座易产生晶间腐蚀;
c)焊接金属波纹管、弹簧等在应力与介质腐蚀的共同作用下易发生破裂。
5.由于高温效应而产生的机械密封失效
威格士电磁换向阀是自动控制中直接与流体相接触的执行器。对热工对象来说,其控制流体(往往是水)的流量和压力,关系着过程、空气调节等自动化的 技术目标的实现。正确选取调节阀的结构形式、流量特性和产品规格,对于自控系统的稳定性、经济合理性有十分重要的作用。
常用的威格士电磁换向阀结构型式的选择主要是根据工艺参数(温度、压力、流量)、介质 性质(粘度、腐蚀性、毒性、杂质状况)以及调节系统的要求(可调节比、噪音、泄漏量)综合考虑来确定。一般情况下,应普通单、双座阀和套筒阀。
因为威格士电磁换向阀结构简单,阀芯形状易于加工,比较经济;或根据具体的特殊要求选择相应结构形式的调节阀。结构型式确定以后,调节阀的具体规格关系到阀的流量特性 是否与系统特性相匹配,关系到系统是否稳定性高、经济性好。
威格士电磁换向阀的流量特性,是指流体流过调节阀的相对流量与调节阀的相对开度之间的关系。易推知,相对 流量与相对开度成正相关,即阀门通道越小,相对开度越小,相对流量越小;阀门通道越大,相对开度越大,相对流量越大。阀门通道为零时,这时流量为零,即阀 门关闭。由流体力学可知,通过阀门的流量与阀门前后的压差成正相关的关系,即:
式中:Q指通过威格士电磁换向阀的流量;ΔP是指阀门前后形成的压差;K是指系数。
威格士电磁换向阀压差往往是由调节阀开度(阀芯的位移L)所形成的流体通道决定,开度越小,相对开度越小,阀门前后压差越大;开度越大,相对开度越大,阀门前后的压差越 小。可以说,通过威格士电磁换向阀的流量大小不仅与阀的开度有关,而且和阀前后的压差有关。工作中的调节阀,当阀的开度改变时,不仅流量发生了变化,阀前后压差也发 生了变化。为了便于讨论,先假定阀前后压差一定,即先讨论理想流量特性,然后再考虑调节阀在管路中的实际情况,即讨论工作流量特性。
威格士电磁换向阀试好后,一般要进行静试,观察泄漏量。如泄漏量较小,多为动环或静环密封圈存在问题;泄漏量较大时,则表明动、静环摩擦副间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再手动盘车观察,若泄漏量无明显变化则静、动环密封圈有问题;如盘车时泄漏量有明显变化则可断定是动、静环摩擦副存在问题;如泄漏介质沿轴向喷射,则动环密封圈存在问题居多,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。此外,泄漏通道也可同时存在,但一般有主次区别,只要观察细致,熟悉结构,一定能正确判断。