采用CKD电磁阀瓣和双座套筒宽导向结构
采用CKD电磁阀瓣和双座套筒宽导向结构,可有效消除机构振动噪声和提高使用寿命,采用低流阻、高容量的阀体和套筒,具有流量大、调节范围大以及很小的密封泄漏(见性能指标)。执行机构接受0-10mA或4-20mA直流信号,控制调节阀的开度,实现对管路内介质的压力、流量、液位等受控参数的控制,结如下:
(1)改变不平衡力Ft的作用方向通常采用改变流向的方法来改变FI的作用方向。如把以dg≥20mm的电动直通单座阀由流闭型改为流开型,可方便地解决阀的稳定性问题。
(2)避开阀自身的不稳定区不平衡力FI发生方向变化的交变处,电动阀易产生振荡。如电动蝶阀,通常在5°~10°、75°两处发生交变,故小开度应大于20%,全开度为70°;再如双座阀,一般在10%以内和80%~90%开度上发生交变,使用中应加以回避。
(3)更换稳定性好的阀稳定性好的阀其不平衡力变化较小、导向好,电动套筒阀就有这一特点。当电动双座阀稳定性较差时,可换成电动套筒阀使用。
(4)增大弹簧刚度这是提高稳定性常见的简单方法,如将20~100kPa的弹簧改成60~180kPa的大刚度弹簧。采用此法主要是带有定位器的阀,否则要另配定位器。
(5)降低响应速度当系统要求阀的响应或调节速度不宜太快(如流量需要微调时)而阀的速度较快时,或者系统本身已是快速响应系统,而阀又带定位器来加快动作时,都将会产生调,发生振荡。
1、CKD电磁阀的整体振动是整个调节阀在管道或底座上的频繁振动。原因是管道或底座的剧烈振动引起整个控制阀的振动。此外,它还与频率有关。当外部频率等于或接近系统固有频率时,受迫振动能量达到较大值,发生共振。
2、控制阀盘振动。其主要原因是介质流量的急剧增加使调节阀前后压差急剧变化。
二、空化振动;
空化振动主要发生在液体介质的控制阀中。产生气穴的根本原因是流体收缩加速和控制阀中静压降低导致液体蒸发。控制阀开度越小,前后压差越大,流体加速和空化的可能性越大,相应阻塞流的压降越小。
三、流体动力振动;
CKD电磁阀中介质的节流过程也是摩擦、阻力和干扰的过程。当湍流流体通过控制阀时,由于控制阀不能很好地围绕流体流动,就会形成漩涡,随着流体的连续流动,漩涡就会下降。旋涡脱落频率的形成及其影响因素是非常复杂和随机的。定量计算是非常困难的,但客观地说,脱落频率占主导地位。当主脱落频率接近或与调节阀及其附件的结构频率一致时,会发生共振,使调节阀产生振动和噪声。振动的强度取决于主脱落频率的强度和高次谐波方向的一致性。
采用CKD电磁阀瓣和双座套筒宽导向结构