传感器的发展历程
传感器是一种能将物理量、化学量、生物量等转换成电信号的器件。输出信号有
不同形式,如电压、电流、频率、脉冲等,能满足信息传输、处理、记录、显示、
控制要求,是自动检测系统和自动控制系统中不可缺少的元件。如果把计算机比
作大脑,那么传感器则相当于五官,传感器能正确感受被测量并转换成相应输出
量,对系统的质量起决定性作用。自动化程度越高,系统对传感器要求越高。在
的信息时代里,信息产业包括信息采集、传输、处理三部分,即传感技术、
通信技术、计算机技术。现代的计算机技术和通信技术由于大规模集成电路的
飞速发展,而已经充分发达后,不仅对传感器的精度、可靠性、响应速度、获取
的信息量要求越来越高,还要求其成本低廉且使用方便。显然传统传感器因功能、
特性、体积、成本等已难以满足而逐渐被淘汰。世界许多发达都在加快对传
感器新技术的研究与开发,并且都已取得极大的突破。如今传感器新技术的发展,
主要有以下几个方面:
传感器的发展历程
一.发现并利用新现象
利用物理现象、化学反应、生物效应作为传感器原理,所以研究发现新现象与新
效应是传感器技术发展的重要工作,是研究开发传感器的基础。
日本夏普公司利用导技术研制高温导磁性传感器,是传感器技术的重大
突破,其灵敏度高,仅次于导量子干涉器件。它的制造工艺远比导量子干涉
器件简单。可用于磁成像技术,有广泛推广价值。
利用抗体和抗原在电极表面上相遇复合时,会引起电极电位的变化,利用这一现
象可制出免疫传感器。用这种抗体制成的免疫传感器可对某生物体内是否有这种
抗原作检查。如用肝炎病毒抗体可检查某人是否患有肝炎,起到快速、准确作用。
美国加州大学已研制出这类传感器。
传感器的发展历程
二.利用新材料
传感器材料是传感器技术的重要基础,由于材料科学进步,人们可制造出各种新
型传感器。例如用高分子聚合物薄膜制成温度传感器;光导纤维能制成压力、流
量、温度、位移等多种传感器;用陶瓷制成压力传感器。
高分子聚合物能随周围环境的相对湿度大小成比例地吸附和释放水分子。高分子
电介常数小,水分子能提高聚合物的介电常数。将高分子电介质做成电容器,测
定电容容量的变化,即可得出相对湿度。利用这个原理制成等离子聚合法聚苯乙
烯薄膜温度传感器,其有以下特点:
测湿范围宽;
温度范围宽,可达-40℃~+1500℃;
响应速度快,小于1S;
尺寸小,可用于小空间测湿;
温度系数小。
陶瓷电容式压力传感器是一种无中介液的干式压力传感器。采用的陶瓷技
术,厚膜电子技术,其技术性能稳定,年漂移量小于0.1%F.S温漂小于
±0.15%/10K抗过载强可达量程的数百倍。测量范围可从0 到60mpa。德国
E+H 公司和美国Kavlio 公司产品处于地位。光导纤维的应用是传感材料的重大突破,其早用于光通信技术。在光通信利用
中发现当温度、压力、电场、磁场等环境条件变化时,引起光纤传输的光波强度、
相位、频率、偏振态等变化,测量光波量的变化,就可知道导致这些光波量变化
的温度、压力、电场、磁场等物理量的大小,利用这些原理可研制出光导纤维传
感器。光纤传感器与传统传感器相比有许多特点:灵敏度高,结构简单、体积小、
耐腐蚀、电绝缘性好、光路可弯曲、便于实现遥测等。光纤传感器日本处于
水平。如IdecIzumi 公司和Sunx 公司。光纤传感受器与集成光路技术相结合,
加速光纤传感器技术的发展。将集成光路器件代替原有光学元件和无源光器件,
使光纤传感器有高的带宽、低的信号处理电压,可靠性高,成本低。
传感器的发展历程
三.微机械加工技术
半导体技术中的加工方法有氧化、光刻、扩散、沉积、平面电子工艺,各向导性
腐蚀及蒸镀,溅射薄膜等,这些都已引进到传感器制造。因而产生了各种传
感器,如利用半导体技术制造出硅微传感器,利用薄膜工艺制造出快速响应的气
敏、湿敏传感器,利用溅射薄膜工艺制压力传感器等。
日本横河公司利用各向导性腐蚀技术进行高精度三维加工,制成全硅谐振式压力
传感器。核心部分由感压硅膜片和硅膜片上面制作的两个谐振梁结成,两个谐振
梁的频差对应不同的压力,用频率差的方法测压力,可消除环境温度等因素带来
的误差。当环境温度变化时,两个谐振梁频率和幅度变化相同,将两个频率差后,
其相同变化量就能够相互抵消。其测量高精度可达0.01%FS。
美国SiliconMicrostructureInc.(SMI)公司开发一系列位线性度在0.1%到
0.65%范围内的硅微压力传感器低满量程为0.15psi(1KPa)其以硅为材料制
成具有的三维结构轻细微机械加工和多次蚀刻制成惠斯登电桥于硅膜片
上当硅片上方受力时其产生变形电阻产生压阻效应而失去电桥平衡输出与压
力成比例的电信号.象这样的硅微传感器是当今传感器发展的前沿技术其基本
特点是敏感元件体积为微米量级是传统传感器的几十、几百分。在工业控
制、航空航天领域、生物医学等方面有重要的作用,如飞机上利用可减轻飞机重
量,减少能源。另一特点是能敏感微小被测量,可制成血压压力传感器。
航空公司北京测控技术研究所,研制的CYJ 系列溅谢膜压力传感器是采
用离子溅射工艺加工成金属应变计,它克服了非金属式应变计易受温度影响的不
足,具有高稳定性,适用于各种场合,被测介质范围宽,还克服了传统粘贴式带
来的精度低、迟滞大、蠕变等缺点,具有精度高、可靠性高、体积小的特点,广
泛用于航空、石油、化工、医疗等领域。
传感器的发展历程
四.集成传感器
集成传感器的优势是传统传感器无法达到的,它不仅仅是一个简单的传感器,其
将辅助电路中的元件与传感元件同时集成在一块芯片上,使之具有校准、补偿、
自诊断和网络通信的功能,它可降低成本、增加产量,美国LUCAS、
NOVASENSOR 公司开发的这种血压传感器,每星期能生产1 万只。
传感器的发展历程
五.智能化传感器
智能化传感器是一种带微处理器的传感器,是微型计算机和传感器相结合的成
果,它兼有检测、判断和信息处理功能,与传统传感器相比有很多特点:
具有判断和信息处理功能,能对测量值进行修正、误差补偿,因而提高测量精度;
可实现多传感器多参数测量;
有自诊断和自校准功能,提高可靠性;
测量数据可存取,使用方便;
有数据通信接口,能与微型计算机直接通信。
把传感器、信号调节电路、单片机集成在一芯片上形成大规模集成化的高级智
能传感器。美国HONYWELL 公司ST-3000 型智能传感器,芯片尺寸才有
3×4×2mm3,采用半导体工艺,在同一芯片上制成CPU、EPROM、静压、压
差、温度等三种敏感元件。
智能化传感器的研究与开发,美国处于地位。美国宇航局在开发宇宙飞船时
称这种传感器为灵巧传感器(SmartSensor),在宇宙飞船上这种传感器是非常
重要的。我国在这方面的研究与开发还很落后,主要是因为我国半导体集成电路
工艺水平有限。
传感器的发展日新月异,特别是80 年代人类由高度工业化进入信息时代以来,
传感器技术向更新、更高的技术发展。美国、日本等发达的传感器技术发展
快,我国由于基础薄弱,传感器技术与这些发达相比有较大的差距。因此,
我们应该加大对传感器技术研究、开发的投入,使我国传感器技术与外国差距缩
短,促进我国仪器仪表工业和自化化技术的发展。
传感器的发展历程
北京诺信天正科技有限公司
王杰
电话:
传感器的发展历程