汉中西门子S7-300代理商
西门子代理商-上海诗幕,库存大量西门子PLC,产品种类、型号齐全,涵盖了西门子200系列PLC、西门子300系列PLC及其EM221模块、EM222模块、EM223模块、EM231模块、EM232模块、EM235模块、PPI电缆、MPI电缆、5611卡、SM321、SM322、SM323、SM331、EM332模块等,S7-200系列主机包括CPU224CN、CPU226CN、CPU224XP,S7-300系列主机包括CPU312、CPU313、CPU314、CPU315-2DP等,价格低,交货速度快。
9 9:85011 1590
S7-300
PLC输入和输出指令说明与举例 LD:逻辑取指令,从母线开始取常开触点。 LDI:逻辑取反指令,从母线开始取常闭触点。 OUT:线圈的驱动指令。 指令说明: 1.LD、LDI指令用于将触点接到母线上。 2.OUT指令是对输出继电器、辅助继电器、状态定时器、计数器的线圈驱动指令,对输入继电器不能使用。 3.OUT指令可作多次并联使用。 举例: (1) 梯形图 :如图 (2) 程序清单 LD X000 OUT Y000 END ? 在分析PLC控制系统的功能时,可以将它想象成一个继电器控制系统中的控制箱,其外部接线图描述了这个控制箱的外部接线,梯形图是这个控制箱的内部“线路图”,梯形图中的输入继电器和输出继电器是这个控制箱与外部世界联系的“接口继电器”,这样就可以用分析继电器电路图的方法来分析PLC控制系统。在分析时可以将梯形图中输入继电器的触点想象成对应的外部输入器件的触点或电路,将输出继电器的线圈想象成对应的外部负载的线圈。外部负载的线圈除了受梯形图的控制外,还可能受外部触点的控制。 图1是某摇臂钻床的继电器控制电路原理图。钻床的主轴电机用接触器KM1控制,摇臂的升降电机用KM2和KM3控制,立柱的松开和夹紧电机用KM4和KM5控制。图2和图4-16是实现具有相同功能的PLC的外部接线图和梯形图。 将继电器电路图转换为功能相同的PLC的外部接线图和梯形图的步骤如下: 了解和熟悉被控设备的工艺过程和机械的动作情况,根据继电器电路图分析和掌握控制系统的工作原理,这样才能做到在设计和调试控制系统时心中有数。 2 )确定PLC的输入信号和输出负载,画出PLC的外部接线图。 继电器电路图中的交流接触器和电磁阀等执行机构用PLC的输出继电器来控制,它们的线圈接在PLC的输出端。按钮、控制开关、限位开关、接近开关等用给PLC提供控制合作和反馈信号,它们的触点接在PLC的输入端。继电路图中的中间继电器和时间继电器的功能用PLC内部的辅助继电器和定时器来完成,它们与PLC的输入继电器和输出继电器无关。 画出PLC的外部接线图后,同时也确定了PLC的各输入信号和输出负载对应的输入继电器和输出继电器的元件号。例如图2中控制摇臂上升的按钮SB3接在PLC的X0输入端子上,该控制信号在梯形图中对应的输入继电器的元件号X0。在梯形图中,可以将X0的触点想象为SB3的触点。 3)确定与继电器电路图的中间继电器、时间继电路对应的梯形图中的辅助继电器(M)和定时器(T)的元件号。 第2步和第3步建立了继电器电路图中的元件和梯形图中的元件模块化微型PLC系统,满足中、小规模的性能要求各种性能的模块可以非常好地满足和适应自动化控制任务简单实用的分布式结构和多界面网络能力,应用十分灵活方便用户和简易的无风扇设计当控制任务增加时,可自由扩展大量的集能使它功能非常强劲
S7-300F
故障安全型自动化系统,满足工厂日益增加的安全需求基于S7-300可连接配有安全相关模块的附加 ET 200S 和 ET 200M 分布式 I/O 站通过采用 PROFIsafe 行规的 PROFIBUS DP 进行安全相关通讯此外,还有用于与安全无关应用的标准模块ST 70 产品样本:您也可以在产品目录 ST 70 中查找有关 SIMATIC S7-300 的信息:
S7-300 是模块化的微型 PLC 系统,可满足中、低端的性能要求。模块化、无风扇设计、易于实现分布式结构以及方便的操作,使得 SIMATIC S7-300 成为中、低端应用中各种不同任务的经济、用户友好的解决方案。SIMATIC S7-300 的应用领域包括:特殊机械,纺织机械,包装机械,一般机械设备制造,控制器制造,机床制造,安装系统,电气与电子工业及相关产业。多种性能等级的 CPU,具有用户友好功能的全系列模块,可允许用户根据不同的应用选取相应模块。任务扩展时,可通过使用附加模块随时对控制器进行升级。SIMATIC S7-300 是一个通用的控制器:具有高电磁兼容性和抗震性,可大限度地用于工业领域。
S7-300FSIMATIC S7-300F 故障安全自动化系统可使用在对安全要求较高的设备中。其可对立即停车过程进行控制,因此不会对人身、环境造成损害。S7-300F 满足下列安全要求:要求等级 AK 1 - AK 6 符合 DIN V 19250/DIN V VDE 0801安全要求等级 SIL 1 - SIL 3 符合 IEC 61508类别 1 - 4 符合 EN 954-1另外,标准模块还可用在 S7-300F 及故障安全模块中。因此它可以创建一个全集成的控制系统,在非安全相关和安全相关任务共存的工厂中使用。使用相同的标准工具对整个工厂进行组态和编程。
S7-300自动化系统采用模块化设计。它拥有丰富的模块,且这些模块均可以独立地组合使用。
一个系统包含下列组件:CPU:不同的 CPU 可用于不同的性能范围,包括具有集成 I/O 和对应功能的 CPU 以及具有集成 PROFIBUS DP、PROFINET 和点对点接口的 CPU。用于数字量和模拟量输入/输出的信号模块 (SM)。用于连接总线和点对点连接的通信处理器 (CP)。用于高速计数、定位(开环/闭环)及 PID 控制的功能模块(FM)根据要求,也可使用下列模块:用于将 SIMATIC S7-300 连接到 120/230 V AC 电源的负载电源模块(PS)。接口模块 (IM),用于多层配置时连接中央控制器 (CC) 和扩展装置 (EU)。通过分布式中央控制器 (CC) 和 3 个扩展装置 (EU),SIMATIC S7-300 可以操作多达 32 个模块。所有模块均在外壳中运行,并且无需风扇。SIPLUS 模块可用于扩展的环境条件:适用于 -25 至 +60℃ 的温度范围及高湿度、结露以及有雾的环境条件。防直接日晒、雨淋或水溅,在防护等级为 IP20 机柜内使用时,可直接在汽车或室外建筑使用。不需要空气调节的机柜和 IP65 外壳。
设计简单的结构使得 S7-300 使用灵活且易于维护:安装模块:只需简单地将模块挂在安装导轨上,转动到位然后锁紧螺钉。集成的背板总线: 背板总线集成到模块里。模块通过总线连接器相连,总线连接器插在外壳的背面。模块采用机械编码,更换极为容易更换模块时,必须拧下模块的固定螺钉。按下闭锁机构,可轻松拔下前连接器。前连接器上的编码装置防止将已接线的连接器错插到其他的模块上。现场证明可靠的连接:对于信号模块,可以使用螺钉型、弹簧型或绝缘刺破型前连接器。TOP 连接:为采用螺钉型接线端子或弹簧型接线端子连接的 1 线 - 3 线连接系统提供预组装接线另外还可直接在信号模块上接线。规定的安装深度所有的连接和连接器都在模块上的凹槽内,并有前盖保护。因此,所有模块应有明确的安装深度。无插槽规则:信号模块和通信处理器可以不受限制地以任何方式连接。系统可自行组态。扩展若用户的自动化任务需要 8 个以上的 SM、FM 或 CP 模块插槽时,则可对 S7-300(除 CPU 312 和 CPU 312C 外)进行扩展:中央控制器和3个扩展机架多可连接32个模块:共可将 3 个扩展装置(EU)

用PLC实现步进电机的直接控制 步进电机的可编程控制器直接控制,可使组合机床自动生产线控制系统的成本显著下降。文章介绍了用PLC控制步进电机驱动的数控滑台方法,伺服控制、驱动及接口以及步进电机PLC控制的软件逻辑。 1 概述 在组合机床自动线中,一般根据不同的加工精度要求设置三种滑台(1)液压滑台,用于切削量大,加工精度要求较低的粗加工工序中;(2)机械滑台,用于切削量中等,具有一定加工精度要求的半精加工工序中;(3)数控滑台,用于切削量小,加工精度要求很高的精加工工序中。可编程控制器(简称PLC)以其通用性强、可靠性高、指令系统简单、编程简便易学、易于掌握、体积小、维修工作少、现场接口安装方便等一系列优点,被广泛应用于工业自动控制中。特别是在组合机床自动生产线的控制及CNC机床的S、T、M功能控制更显示出其的性能。PLC控制的步进电机开环伺服机构应用于组合机床自动生产线上的数控滑台控制,可省去该单元的数控系统使该单元的控制系统成本降低70~90%,甚至只占用自动线控制单元PLC的3~5个I/O接口及<1KB的内存。特别是大型自动线中可以使控制系统的成本显著下降。 2 PLC控制的数控滑台结构 一般组合机床自动线中的数控滑台采用步进电机驱动的开环伺服机构。采用PLC控制的数控滑台由可编程控制器、环行脉冲分配器、步进电机驱动器、步进电机和伺服传动机构等部分组成,见图1。 图1 伺服传动机构中的齿轮Z1、Z2应该采取消隙措施,避免产生反向死区或使加工精度下降;而丝杠传动副则应该根据该单元的加工精度要求,确定是否选用滚珠丝杠副。采用滚珠丝杠副,具有传动效率高、系统刚度好、传动精度高、使用寿命长的优点,但成本较高且不能自锁。 3 数控滑台的PLC控制方法 数控滑台的控制因素主要有三个: 3.1 行程控制 一般液压滑台和机械滑台的行程控制是利用位置或压力传感器(行程开关/死挡铁)来实现;而数控滑台的行程则采用数字控制来实现。由数控滑台的结构可知,滑台的行程正比于步进电机的转角,因此只要控制步进电机的转角即可。由步进电机的工作原理和特性可知步进电机的转角正比于所输入的控制脉冲个数;因此可以根据伺服机构的位移量确定PLC输出的脉冲个数: n= DL/d (1) 式中 DL——伺服机构的位移量(mm),d ——伺服机构的脉冲当量(mm/脉冲) 3.2 进给速度控制 伺服机构的进给速度取决于步进电机的转速,而步进电机的转速取决于输入的脉冲频率;因此可以根据该工序要求的进给速度,确定其PLC输出的脉冲频率: f=Vf/60d (Hz) (2) 式中 Vf——伺服机构的进给速度(mm/min) 3.3 进给方向控制 进给方向控制即步进电机的转向控制。步进电机的转向可以通过改变步进电机各绕组的通电顺序来改变其转向;如三相步进电机通电顺序为A-AB-B-BC-C-CA-A…时步进电机正转;当绕组按A-AC-C-CB-B-BA-A…顺序通电时步进电机反转。因此可以通过PLC输出的方向控制信号改变硬件环行分配器的输出顺序来实现,或经编程改变输出脉冲的顺序来改变步进电机绕组的通电顺序实现。 4 PLC的软件控制逻辑 由滑台的PLC控制方法可知,应使步进电机的输入脉冲数和脉冲频率受到相应的控制。因此在控制软件上设置一个脉冲数和脉冲频率可控的脉冲信号发生器;对于频率较低的控制脉冲,可以利用PLC中的定时器构成,如图2所示。脉冲频率可以通过定时器的定时常数控制脉冲周期,脉冲数控制则可以设置一脉冲计数器C10。当脉冲数达到设定值时,计数器C10动作切断脉冲发生器回路,使其停止工作。伺服机构的步进电机无脉冲输入时便停止运转,伺服执行机构定位。当伺服执行机构的位移速度要求较高时,可以用PLC中的高速脉冲发生器。不同的PLC其高速脉冲的频率可达4000~6000Hz。对于自动线上的一般伺服机构,其速度可以得到充分满足。 图2 5 伺服控制、驱动及接口 5.1 步进电机控制系统的组成 步进电机的控制系统由可编程控制器、环行脉冲分配器和步进电机功率驱动器组成,其结构见图1。 控制系统中PLC用来产生控制脉冲;通过PLC编程输出一定数量的方波脉冲,控制步进电机的转角进而控制伺服机构的进给量;同时通过编程控制脉冲频率——既伺服机构的进给速度;环行脉冲分配器将可编程控制器输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。PLC控制的步进电机可以采用软件环行分配器,也可以采用如图1所示的硬件环行分配器。采用软环占用的PLC资源较多,特别是步进电机绕组相数M>4时,对于大型生产线应该予以充分考虑。采用硬件环行分配器,虽然硬件结构稍微复杂些,但可以节省占用PLC的I/O口点数,目前市场有多种芯片可以选用。步进电机功率驱动器将PLC输出的控制脉冲放大到几十~上百伏特、几安~十几安的驱动能力。一般PLC的输出接口具有一定的驱动能力,而通常的晶体管直流输出接口的负载能力仅为十几~几十伏特、几十~几百毫安。但对于功率步进电机则要求几十~上百伏特、几安~十几安的驱动能力,因此应该采用驱动器对输出脉冲进行放大。 5.2 可编程控制器的接口 如伺服机构采用硬件环行分配器,则占用PLC的I/O口点数少于5点,一般仅为3点。其中I口占用一点,作为启动控制信号;O口占用2点,一点作为PLC的脉冲输出接口,接至伺服系统硬环的时钟脉冲输入端,另一点作为步进电机转向控制信号,接至硬环的相序分配控制端,如图3所示;伺服系统采用软件环行分配器时,其接口如图4。 6 应用实例与结论 将PLC控制的开环伺服机构用于某大型生产线的数控滑台,每个滑台仅占用4个I/O接口,节省了CNC控制系统,其脉冲当量为0.01~0.05mm,进给速度为Vf=3~15m/min,完全满足工艺要求和加工精度要求。
S7-300 具有不同的通信接口:
连接 AS-Interface、PROFIBUS 和 PROFINET/工业以太网总线系统的通信处理器。用于点到点连接的通信处理器多点接口 (MPI), 集成在 CPU 中;是一种经济有效的方案,可以同时连接编程器/PC、人机界面系统和其它的 SIMATIC S7/C7 自动化系统。PROFIBUS DP进行过程通信SIMATIC S7-300 通过通信处理器或通过配备集成 PROFIBUS DP 接口的 CPU 连接到 PROFIBUS DP 总线系统。通过带有 PROFIBUS DP 主站/从站接口的 CPU,可构建一个高速的分布式自动化系统,并且使得操作大大简化。从用户的角度来看,PROFIBUS DP 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。以下设备可作为主站连接:SIMATIC S7-300(通过带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP)SIMATIC S7-400(通过带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP)
SIMATIC C7 (通过带 PROFIBUS DP 接口的 C7 或 PROFIBUS DP CP)SIMATIC S5-115U/H、S5-135U 和 S5-155U/H,带IM 308SIMATIC 505出于性能原因,每条线路上连接的主站不得过 2 个。以下设备可作为从站连接:ET 200 分布式 I/O 设备S7-300,通过 CP 342-5CPU 313C-2 DP, CPU 314C-2 DP, CPU 314C-2 PN/DP, CPU 315-2 DP, CPU 315-2 PN/DP, CPU 317-2 DP, CPU 317-2 PN/DP and CPU 319-3 PN/DPC7-633/P DP, C7-633 DP, C7-634/P DP, C7-634 DP, C7-626 DP, C7-635, C7-636现场设备虽然带有 STEP 7 的编程器/PC 或 OP 是总线上的主站,但是只使用 MPI 功能,另外通过 PROFIBUS DP 也可部分提供 OP 功能。通过 PROFINET IO 进行过程通信SIMATIC S7-300 通过通信处理器或通过配备集成 PROFINET 接口的 CPU 连接到 PROFINET IO 总线系统。通过带有 PROFIBUS 接口的 CPU,可构建一个高速的分布式自动化系统,并且使得操作大大简化。从用户的角度来看,PROFINET IO 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。可将下列设备作为 IO 控制器进行连接:SIMATIC S7-300(使用配备 PROFINET 接口或 PROFINET CP 的 CPU)SIMATIC ET 200使用配备 PROFINET 接口的 CPU)SIMATIC S7-400使用配备 PROFINET 接口或 PROFINET CP 的 CPU)可将下列设备作为 IO 设备进行连接:ET 200 分布式 I/O 设备ET 200S IM151-8 PN/DP CPU, ET 200pro IM154-8 PN/DP CPUSIMATIC S7-300使用配备 PROFINET 接口或 PROFINET CP 的 CPU)现场设备通过 AS-Interface 进行过程通信S7-300 所配备的通信处理器 (CP 342-2) 适用于通过 AS-Interface 总线连接现场设备(AS-Interface 从站)。更多信息,请参见通信处理器。通过 CP 或集成接口(点对点)进行数据通信
通过 CP 340/CP 341 通信处理器或 CPU 313C-2 PtP 或 CPU 314C-2 PtP 的集成接口,可经济有效地建立点到点连接。有三种物理传输介质支持不同的通信协议:
可以连接以下设备:
SIMATIC S7、SIMATIC S5 自动化系统和其他公司的系统打印机机器人控制扫描器,条码阅读器,等特殊功能块包括在通信功能手册的供货范围之内。使用多点接口 (MPI) 进行数据通信MPI(多点接口)是集成在 SIMATIC S7-300 CPU 上的通信接口。它可用于简单的网络任务。MPI 可以同时连接多个配有 STEP 7 的编程器/PC、HMI 系统(OP/OS)、S7-300 和 S7-400。全局数据:全局数据通信”服务可以在联网的 CPU 间周期性地进行数据交换。 一个 S7-300 CPU 可与多达 4 个数据包交换数据,每个数据包含有 22 字节数据,可同时有 16 个 CPU 参与数据交换(使用 STEP 7 V4.x)。
例如,可以允许一个 CPU 访问另一个 CPU 的输入/输出。只可通过 MPI 接口进行全局数据通信。内部通信总线(C-bus):CPU 的 MPI 直接连接到 S7-300 的 C 总线。因此,可以通过 MPI 从编程器直接找到与 C 总线连接的 FM/CP 模块的地址

PLC指令表编程语言介绍和举例 指令表编程语言类似于计算机中的助记符汇编语言,它是可编程控制器基础的编程语言。所谓指令表编程,是用一个或几个容易记忆的字符来代表可编程控制器的某种操作功能,具体指令的说明将在后面的相关内容中作详细的介绍。指令表示例如图1所示。 两台砂轮机的电气控制原理图举例 1.砂轮机的电气控制 砂轮机通常用于修磨刀具。高速旋转的砂轮装在电动机的轴上,与电动机转子同速旋转。虽然它也只要电机单向旋转,但由于工作时粉尘太多,不宜采用开启式负荷开关,而封闭式负荷开关又不适宜频繁操作,所以砂轮机一般采用转换开关控制。图1-9时两台砂轮机的电路图。 控制原理与特点: (1) 转换开关SA1(或SA2)的旋转按钮置于Ⅰ(开),三相电源与电动机接通,砂轮电机起动运转,置于位置Ⅱ(关),砂轮电机停。因组合开关没有短路保护功能,所以电路中接入熔断器的闸刀开关或铁壳开关,也可以是断路器,用它来隔离电源,并起到短路保护作用。 (2) 由于砂轮与电机轴的连接是用螺帽固定的,所以砂轮罩壳上用箭头指示了砂轮的旋转方向,如果反向旋转,有可能因旋转惯性使螺帽松开而造成高速旋转的砂轮飞出的重大事故。在接砂轮电机的电源时,切记先试它的转向是否与箭头方向一致。 2.转换开关(组合开关)和转换开关 (1) 组合开关 转换开关又称组合开关,图1-10是HZ10系列组合开关外形与结构图。转换开关实质上是一种特殊刀开关,是操作手柄在与安装面平行的平面内左右转动的刀开关。只不过一般刀开关的操作手柄是在垂直安装面的平面内向上或向下转动,而组合开关的操作手柄则是平行于安装面的平面内向左或向右转动而已。多用在机床电气控制线路中,作为电源的引入开关,也可以用作不频繁地接通和断开电路、换接电源和负载以及控制5KW以下的小容量电动机的正反转和星三角起动等。 转换开关的图形符号和文字符号如图1-11 (2)转换开关 比组合开关有更多的操作位置和触点、能够接多个电路的一种手动控制电器。由于它的档位多、触点多,可控制多个电路,能适应复杂线路的要求,图1-12是LW12转换开关外形图,它是有多组相同结构的触点叠装而成,在触头盒的上方有操作机构。由于扭转弹簧的储能作用,操作呈现了瞬时动作的性质,故触头分断迅速,不受操作速度的影响。 转换开关在电气原理图中的画法,如图1-13所示。图中虚线表示操作位置,而不同操作位置的各对触点通断状态与触点下方或右侧对应,规定用于虚线相交位置上的涂黑圆点表示接通,没有涂黑圆点表示断开。另一种是用触点通断状态表来表示,表中以“+”(或“ ╳ ”)表示触点闭合,“—”(或无记号)表示分断。 组合开关的文字符号:SA
我公司在西门子公司重点产品:
SIEMENS 可编程控制器
1、 SIMATIC S7 系列PLC、S7200、s71200、S7300、S7400、ET200
2、 逻辑控制模块 LOGO!230RC、230RCO、230RCL、24RC、24RCL等
3、 SITOP 系列直流电源 24V DC 1.3A、2.5A、3A、5A、10A、20A、40A
4、HMI 触摸屏TD200 TD400C TP177,MP277 MP377
SIEMENS 交、直流传动装置
1、 交流变频器 MICROMASTER系列:MM、MM420、MM430、MM440、ECO
MIDASTER系列:MDV
6SE70系列(FC、VC、SC)
2、全数字直流调速装置 6RA23、6RA24、6RA28、6RA70 系列
SIEMENS 数控 伺服
1、840D、802S/C、802SL、828D 801D :6FC5210,6FC6247,6FC5357,6FC5211,6FC5200,6FC5510,
2、伺服驱动 : 6SN1123,6SN1145,6SN1146,6SN1118,6SN1110,6SN1124,6SN1125,6SN1128
S7-300plc常规型号如下:
6ES7312-1AE14-0AB0 CPU312, 32KB
6ES7314-1AF11-0AB0 CPU314, 64 KB
6ES7314-1AG13-0AB0 CPU314, 96 KB
6ES7314-1AG14-0AB0 CPU314, 128 KB
6ES7313-6CG04-0AB0 CPU313C-2 DP, 16DI/16DO, 128 KB
6ES7314-6BH04-0AB0 CPU314C-2PTP, 24DI/16DO/5AI/2AO, 192 KB
6ES7314-6CG03-0AB0 CPU314C-2DP, 24DI/16DO/4AI/2AO, 96 KB
6ES7314-6CH04-0AB0 CPU314C-2DP, 24DI/16DO/5AI/2AO, 192 KB
6ES7314-6EH04-0AB0 CPU314C-2PN/DP, 24DI/16DO/4AI/2AO, 192KB
6ES7315-2AG10-0AB0 CPU315-2DP, 128KB
6ES7315-2AH14-0AB0 CPU315-2DP, 256 KB
6ES7315-2EG10-0AB0 CPU315-2 PN/DP, 128KB
6ES7315-2EH13-0AB0 CPU315-2 PN/DP, 256 KB
6ES7315-2EH14-0AB0 CPU315-2 PN/DP, 384 KB
6ES7316-1AG00-0AB0 SIMATIC S7-300, CPU 316
6ES7316-2AG00-0AB0 SIMATIC S7-300, CPU 316
6ES7317-2AJ10-0AB0 CPU317-2DP, 512KB
6ES7317-2AK14-0AB0 CPU317-2 DP, 1 MB
6ES7317-2EJ10-0AB0 CPU317-2 PN/DP, 512KB
6ES7317-2EK13-0AB0 CPU317-2 PN/DP, 1 MB
6ES7317-2EK14-0AB0 CPU317-2 PN/DP, 1 MB
6ES7318-2AJ00-0AB0 CPU318-2DP, 512KB
6ES7318-3EL00-0AB0 CPU319-3 PN/DP, 1.4MB
6ES7318-3EL01-0AB0 CPU319-3 PN/DP, 2 MB
6ES7305-1BA80-0AA0 PS305 24 V/ 2 A OUTDOOR
6ES7307-1BA00-0AA0 POWER SUPPLY PS307 24 V/2 A [Intranet]
6ES7307-1BA01-0AA0 电源 PS307 24V/2A
6ES7307-1EA00-0AA0 POWER SUPPLY PS307 24 V/5 A [Intranet]
6ES7307-1EA01-0AA0 电源 PS307 24 V/5 A
6ES7307-1EA80-0AA0 PS307 24 V/ 5 A OUTDOOR
6ES7307-1KA00-0AA0 POWER SUPPLY PS307 24 V/10 A [Intranet]
6ES7307-1KA01-0AA0 POWER SUPPLY PS307 24 V/10 A [Intranet]
6ES7307-1KA02-0AA0 电源 PS307 24 V/10 A
6ES7321-1BH02-0AA0 SM321, 16DI, DC24V
6ES7321-1BH10-0AA0 SM321,16DI,DC24V, 0.05MS INPUT DELAY.
6ES7321-1BH50-0AA0 SM321, 16DI, DC24V, SOURCE INPUT
6ES7321-1BH81-0AA0 SM 321, 16 *DC 24V, optically isolated
6ES7321-1BH82-0AA0 SIMATIC S7-300, DIGITAL INPUT
6ES7321-1BL00-0AA0 SM321, 32DI, DC24V
6ES7321-1BL80-0AA0 SIMATIC S7-300, DIGITAL INPUT
6ES7321-1BP00-0AA0 SM321, 64 DI, DC 24V, 3MS, SINK/SOURE
6ES7321-1CH00-0AA0 SM321, 16 DI, AC/DC 24-48V, 1CH/COMMON
6ES7321-1CH20-0AA0 SM321, 16DI, DC48-125V
6ES7321-1CH80-0AA0 SIMATIC S7-300, DIGITAL INPUT
6ES7321-1EH00-0AA0 SM 321, 16*AC 120V, optically isolated
6ES7321-1EH01-0AA0 SIMATIC S7-300, DIGITAL INPUT
6ES7321-1EL00-0AA0 SM321, 32DI, AC120V
6ES7321-1FF00-0AA0 SM 321, 8*AC120/230V, optically isolated
6ES7321-1FF01-0AA0 SM321, 8DI, AC120/230V
6ES7321-1FF10-0AA0 SM321, 8 DI, AC/DC 120/230V, 1CH/COMMON
6ES7321-1FF81-0AA0 SIMATIC S7-300, DIGITAL INPUT
6ES7321-1FH00-0AA0 SM321, 16 DI, 120/230V AC
6ES7321-7BH00-0AB0 SM 321, 16*DC 24V, with interrupts
6ES7321-7BH01-0AB0 SM321, 16DI, 24V DC
6ES7321-7BH80-0AB0 SIMATIC S7-300, DIGITAL INPUT
6ES7321-7EH00-0AB0 SM 321; 16DI, DC 24/125 V
6ES7321-7TH00-0AB0 SM321, 16 DI, 24V DC, DIAGNOSTICS
6ES7322-1BF00-0AA0 SM 322, 8*DC 24V, 2A, optically isolated
6ES7322-1BF01-0AA0 SM322, 8DO, 24V DC, 2A
6ES7322-1BH00-0AA0 SM 322, 16*DC 24V/0.5A, optically isolated
6ES7322-1BH01-0AA0 SM322, 16DO 24V DC, 0,5A
6ES7322-1BH10-0AA0 SM322 HIGH SPEED, 16DO 24V DC, 0.5A
6ES7322-1BH81-0AA0 SIMATIC S7-300, DIGITAL OUTPUT
6ES7322-1BL00-0AA0 SM322, 32DO 24V DC, 0,5A
6ES7322-1BP00-0AA0 SM322 64DA, DC24V, 0,3A P-WRITE
6ES7322-1BP50-0AA0 SM322 64DO, DC24V, 0.3A M-WRITE
6ES7322-1CF00-0AA0 SM322, 8DO, 48-125V DC, 1,5A
6ES7322-1CF80-0AA0 SIMATIC S7-300, DIGITAL OUTPUT
6ES7322-1EH00-0AA0 SM 322, 16*AC 120V/0.5A, optically isolated
6ES7322-1EH01-0AA0 SIMATIC S7-300, DIGITAL OUTPUT
6ES7322-1FF00-0AA0 SM 322, 8*AC 120/230V/1A, optically isolated
6ES7322-1FF01-0AA0 SM322, 8DO, 120/230V AC, 1A
6ES7322-1FF81-0AA0 SIMATIC S7-300, DIGITAL OUTPUT
6ES7322-1FH00-0AA0 SM322, 16DO, 120/230V AC, 1A
6ES7322-1FL00-0AA0 SM322, 32DO, 120/230V AC, 1A
6ES7322-1HF00-0AA0 SM 322, 8 * relay
6ES7322-1HF01-0AA0 SM322, 8DA, 24V DC/2A OR 230V AC/2A
6ES7322-1HF10-0AA0 SM322, 8DA, 24V DC/5A OR 230V AC/5A
6ES7322-1HF20-0AA0 SIMATIC S7-300, DIGITAL OUTPUT
6ES7322-1HF80-0AA0 SIMATIC S7-300, DIGITAL OUTPUT
6ES7322-1HH00-0AA0 SIMATIC S7-300, DIGITAL OUTPUT
6ES7322-1HH01-0AA0 SM322, 16DO RELAY
6ES7322-5FF00-0AB0 SM322, 8DO, AC120/230V, 2A
6ES7322-5GH00-0AB0 SM322, 16DO, AC120/230V, 2A
6ES7322-5HF00-0AB0 SM322, 8DO RELAY, 24VDC, 120-230V AC, 5A
6ES7322-8BF00-0AB0 SM322, 8DO, 24V DC, 0,5A
6ES7322-8BF80-0AB0 SIMATIC S7-300, DIGITAL OUTPUT
6ES7322-8BH00-0AB0 SIMATIC S7/PCS7,
6ES7322-8BH01-0AB0 SM322, 16DO, 24V DC, 0,5A
6ES7322-8BH10-0AB0 SM322, 16DO, 24V DC, 0,5A
6ES7323-1BH00-0AA0 SM 323, DI8/DO8*DC 24V/0,5A
6ES7323-1BH01-0AA0 SM323, 8DI/8DO, DC24V, 0,5A
6ES7323-1BH80-0AA0 Digital input/output module
6ES7323-1BH81-0AA0 SIMATIC S7-300, DIGITAL MODULE
6ES7323-1BL00-0AA0 SM323, 16DI/DO, DC24V, 0,5A
6ES7327-1BH00-0AB0 SIMATIC S7-300, DIGITAL MODULE
6ES7331-1KF00-0AB0 SIMATIC S7-300, ANALOG INPUT
6ES7331-1KF01-0AB0 SM331, 8AI, 13BIT
6ES7331-1KF02-0AB0 SM331, 8AI, 13BIT
6ES7331-7HF00-0AB0 SIMATIC S7-300, ANALOG INPUT
6ES7331-7HF01-0AB0 SIMATIC S7-300, ANALOG INPUT
6ES7331-7KB02-0AB0 SM331, 2AI, 9/12/14BIT
6ES7331-7KB81-0AB0 SM 331, 2 * 12 Bit, galv.-isol.
6ES7331-7KB82-0AB0 SIMATIC S7-300, ANALOG INPUT
6ES7331-7KF00-0AB0 SM 331, 8 * 12 Bit, galv.-isol.
6ES7331-7KF02-0AB0 SM331, 8AI, 9/12/14BIT
6ES7331-7NF00-0AB0 SIMATIC S7-300, ANALOG INPUT
6ES7331-7NF10-0AB0 SIMATIC S7-300, ANALOG INPUT
6ES7331-7PE10-0AB0 SM331, 6AI, 16BIT, THERMOCOUPLE
6ES7331-7PF00-0AB0 SIMATIC S7-300, ANALOG INPUT
6ES7331-7PF01-0AB0 SIMATIC S7-300, ANALOG INPUT
6ES7331-7PF10-0AB0 SIMATIC S7-300, ANALOG INPUT
6ES7331-7PF11-0AB0 SIMATIC S7-300, ANALOG INPUT
6ES73317KF010AB0 SIMATIC S7-300, ANALOG INPUT
6ES7332-5HB01-0AB0 SIMATIC S7-300, ANALOG OUTPUT
6ES7332-5HB81-0AB0 SIMATIC S7-300, ANALOG OUTPUT M
6ES7332-5HD00-0AB0 SM 332, 4 * 12 Bit, galv.-isol.
6ES7332-5HD01-0AB0 SIMATIC S7-300, ANALOG OUTPUT
6ES7332-5HF00-0AB0 SIMATIC S7-300, ANALOG OUTPUT
6ES7332-7ND00-0AB0 SM 332, 4*16 Bit, 1,5 ms
6ES7332-7ND01-0AB0 SIMATIC S7,SM 332 ANALOG OUTPUT
6ES7332-7ND02-0AB0 SIMATIC S7,SM 332 ANALOG OUTPUT
6ES7334-0CE00-0AA0 SM 334, AI 4*8Bit, AO 2*8Bit
6ES7334-0CE01-0AA0 SIMATIC S7, ANALOG INPUT MODULE
6ES7334-0KE00-0AB0 SIMATIC S7-300, ANALOG MODULE
6ES7334-0KE80-0AB0 SIMATIC S7-300, ANALOG MODULE
6ES7335-7HG00-0AB0 SIMATIC S7-300, ANALOG MODULE
6ES7335-7HG00-6AA0 INTERFERENCE SUPPRESSOR FILTER
6ES7335-7HG01-0AB0 SIMATIC S7-300, ANALOG MODULE
6ES7335-7HG02-0AB0 SIMATIC S7-300, ANALOG MODULE
6ES7360-3AA00-0AA0 IM 360 for central rack
6ES7360-3AA01-0AA0 SIMATIC S7-300,INTERFACE MODULE
6ES7361-3CA00-0AA0 IM 361 for expansion rack
6ES7361-3CA01-0AA0 IM 361 NTERFACE MODULE IN ER, WITH K-BUS
6ES7365-0BA00-0AA0 IM 365 for 1 expansion rack
6ES7365-0BA01-0AA0 SIMATIC S7-300,INTERFACE MODULE
6ES7365-0BA81-0AA0 SIMATIC S7-300,INTERFACE MODULE
6ES7368-3AF00-0AA0 S7-300 Connecting cable IM360-361
6ES7368-3BB00-0AA0 Cable 368, IM 360, IM 361, 1m
6ES7368-3BB01-0AA0 ConNECTING CABLE F. IM360/361, 1M
6GK7343-1CX00-0xE0 COMMUNICATION PROCESSOR CP 343-1 LEAN
6GK7343-1CX10-0xE0 COMMUNICATION PROCESSOR CP 343-1 LEAN
6GK7343-1BA00-0xE0 COMMUNICATION PROCESSOR CP 343-1
6GK7343-1EX00-0xE0 COMMUNICATION PROCESSOR CP 343-1 TCP
6GK7343-1EX10-0xE0 COMMUNICATION PROCESSOR CP 343-1
6GK7343-1EX11-0xE0 COMMUNICATION PROCESSOR CP 343-1
6GK7343-1EX20-0xE0 COMMUNICATION PROCESSOR CP 343-1
6GK7343-1EX21-0xE0 COMMUNICATION PROCESSOR CP 343-1
6GK7343-1EX30-0xE0 COMMUNICATION PROCESSOR CP 343-1
6ES7340-1AH02-0AE0 SIMATIC S7-300, CP 340
6ES7340-1BH00-0AE0 CP340 W. 20MA INTERFACE (TTY)
6ES7340-1BH02-0AE0 SIMATIC S7-300, CP 340
6ES7340-1CH00-0AE0 CP340 W. RS422/485 INTERFACE
6ES7340-1CH02-0AE0 SIMATIC S7-300, CP 340
6ES7341-1AH01-0AE0 SIMATIC S7-300, CP 341
6ES7341-1AH02-0AE0 CP 341 RS232C (V.24)
6ES7341-1BH00-0AE0 CP341, with 20 mA interface
6ES7341-1BH01-0AE0 SIMATIC S7-300, CP 341
6ES7341-1BH02-0AE0 CP341 20MA-INTERFACE (TTY)
6ES7341-1CH00-0AE0 CP341, with RS422/485 interface
6ES7341-1CH01-0AE0 SIMATIC S7-300, CP 341
6ES7341-1CH02-0AE0 CP341 RS422/485-INTERFACE
6ES7390-1AB60-0AA0 SIMATIC S7-300, RAIL
6ES7390-1AE80-0AA0 SIMATIC S7-300, RAIL
6ES7390-1AF30-0AA0 SIMATIC S7-300, RAIL
6ES7390-1AJ30-0AA0 SIMATIC S7-300, RAIL
6ES7390-1BC00-0AA0 SIMATIC S7-300, RAIL
西门子S7-200系列PLC与PC通信程序流程图及工作过程 在上述通信方式下,由于只用两根线进行数据传送,所以不能够利用硬件握手信号作为检测手段。因而在PC机与PLC通信中发生误码时,将不能通过硬件判断是否发生误码,或者当PC与 PLC工作速率不一样时,就会发生冲突。这些通信错误将导致PLC控制程序不能正常工作,所以必须使用软件进行握手,以保证通信的可靠性。 由于通信是在PC机以及PLC之间协调进行的,所以PC机以及PLC中的通信程序也必须相互协调,即当一方发送数据时另一方必须处于接收数据的状态。如图7-18、图7-19所示分别是PC、PLC的通信程序流程。 图7-18 PC机通信程序流程图 图7-19 S7-PLC通信程序流程图 通信程序的工作过程:PC每发送一个字节前首先发送握手信号,PLC收到握手信号后将其传送回PC,PC只有收到PLC传送回来的握手信号后才开始发送一个字节数据。PLC收到这个字节数据以后也将其回传给PC,PC将原数据与PLC传送回来的数据进行比较,若两者不同,则说明通信中发生了误码,PC机重新发送该字节数据;若两者相同,则说明PLC收到的数据是正确的,PC机发送下一个握手信号,PLC收到这个握手信号后将前一次收到的数据存入的存储区。这个工作过程重复一直持续到所有的数据传送完成。 采用软件握手以后,不管PC与PLC的速度相差多远,发送方永远也不会前于接收方。软件握手的缺点是大大降低了通信速度,因为传送每一个字节,在传送线上都要来回传送两次,并且还要传送握手信号。但是考虑到控制的可靠性以及控制的时间要求,牺牲一点速度是值得的,也是可行的。 PLC方的通信程序只是PLC整个控制程序中的一小部分,可将通信程序编制成PLC的中断程序,当PLC接收到PC发送的数据以后,在中断程序中对接收的数据进行处理。PC方的通信程序可以采用VB、VC等语言,也可直接采用西门子组态软件,如STEP7、WinCC。 PLC编程的一般步骤是什么? 1.对于较复杂系统,需要绘制系统的功能图;对于简单的控制系统也可省去这一步。 2.设计梯形图程序。 3.根据梯形图编写指令表程序。 4.对程序进行模拟调试及修改,直到满足控制要求为止。调试过程中,可采用分段调试的方法,并利用编程器的监控功能。 1、 数据传送指令 数据传送指令包括MOV(传送)、SMOV(BCD码移位传送)、CML(取反传送)、BMOV(数据块传送)、FMOV(多点传送)、XCH(数据交换)。这里主要介绍MOV(传送)指令。 传送指令MOV将源操作数据传送到目标,其指令代码为FNC12,源操作数[S·]可取所有的数据类型,即K、H、KnX、KnY、KnM、KnS、T、C、D、V、Z,其目标操作数[D·]为KnY、KnM、KnS、 T、C、D、V、Z。 如图1所示,,当X0为ON时,执行连续执行型指令,数据100被自动转换成二进制数且传送给D10,当X0变为OFF时,不执行指令,但数据保持不变;当X1为ON时,T0当前值被读出且传送给D20;当X2为ON时,数据100传送给D30,定时器T20的设定值被间接为10秒,当M0闭合时,T20开始计时;MOV(P)为脉冲执行型指令,当X5由OFF变为ON时指令执行一次,(D10)的数据传送给(D12),其它时刻不执行,当X5变为OFF时,指令不执行,但数据也不会发生变化;X3为ON时,(D1、D0)的数据传送给(D11、D10),当X4为ON时,将(C235)的当前值传送给(D21、D20)。注意:运算结果以32位输出的应用指令、32位二进制立即数及32位高速计数器当前值等数据的传送,必须使用(D)MOV或(D)MOV(P)指令。 如图2所示,可用MOV指令等效实现由X0~X3对Y0~Y3的顺序控制。 2、比较指令 比较指令有比较(CMP)、区域比较(ZCP)两种,CMP的指令代码为FNC10,ZCP的指令代码为FNC11,两者待比较的源操作数[S·]均为K、 H、KnX、KnY、KnM、KnS、T、C、D、V、Z,其目标操作数[D·]均为Y、M、S。 CMP指令的功能是将源操作数[S1·]和[S2·]的数据进行比较,结果送到目标操作元件[D·]中。在图3中,当X0为ON时,将十进制数100与计数器C2的当前值比较,比较结果送到M0~M2中,若100>C2的当前值时,M0为ON,若100=C2的当前值时,M1为ON, 若100<C2的当前值时,M2为ON。当X0为OFF时,不进行比较,M0~M2的状态保持不变。 ZCP指令的功能是将一个源操作数[S·]的数值与另两个源操作数[S1·]和[S2·]的数据进行比较,结果送到目标操作元件[D·]中,源数据[S1·]不能大于[S2·]。在图4中,当X1为ON时,执行ZCP指令,将T2的当前值与10和150比较,比较结果送到M0~M2中,若10>T2的当前值时,M0为ON,若10≤T2的当前值≤150时,M1为ON,若150<T2的当前值时,M2为ON。当X1为OFF时,ZCP指令不执行,M0~M2的状态保持不变。 3、加1指令和减1指令 加1指令INC和减1指令DEC的操作数均可取KnY、KnM、KnS、T、C、D、V、,它们不影响零标志、借位标志和进位标志。INC的指令代码为FNC24,DEC的指令代码为FNC25。INC指令的功能是将的目标操作元件[D·]中二进制数自动加1,DEC指令的功能是将的目标操作元件[D·]中二进制数自动减1, 如图5所示,当X0每次由OFF变为ON时,D20中的数自动增加1,当X1每次由OFF变为ON时,D21中的数自动减1。 若用连续执行型加1指令INC或连续执行型减1指令DEC,当条件成立时,在每个扫描周期内的目标操作元件[D·]中数据要自动加1或自动减1。16位数据运算时,+32767再加1就变为-32768,-32768再减1就变为+32767。32位数据运算时,+2147483647再加1就变为-2147483648,-2147483648再减1就变为+2147483647。