西门子PB总线连接器
SIEMENS 上海诗幕自动化设备有限公司
我公司经营西门子 PLC;S7-200S7-300 S7-400 S7-1200 触摸屏,变频器,6FC,6SNS120 V10 V60 V80伺服数控备件:原装进口电机(1LA7、1LG4、1LA9、1LE1),国产电机(1LG0,1LE0)大型电机(1LA8,1LA4,1PQ8)伺服电机(1PH,1PM,1FT,1FK,1FS)西门子保内全新原装产品‘质保一年。一年内因产品质量问题免费更换新产品;不收取任何费。欢迎致电咨询。
詹: 99:850-111-590
PLC控制系统的一般结构和故障类型 PLC控制系统主要由输入部分、CPU、采样部分、输出控制和通讯部分组成,如图1所示。输入部分包括控制面板和输入模板;采样部分包括采样控制模板、AD转换模板和传感器;CPU作为系统的核心,完成接收数据,处理数据,输出控制信号;输出部分有的系统用到DA模板,将输出信号转换为模拟量信号,经过功放驱动执行器;大多数系统直接将输出信号给输出模板,由输出模板驱动执行器工作;通讯部分由通讯模板和上位机组成。 因为PLC本身的故障可能性极小,系统的故障主要来自外围的元部件,所以它的故障可分为如下几种: (1)输入故障,即操作人员的操作失误; ■传感器故障; ■执行器故障; ■PLC软件故障 这些故障,都可以用合适的故障诊断方法进行分析和用软件进行实时监测,对故障进行预报和处理。 PLC控制系统的故障诊断方法 PLC控制系统故障的宏观诊断 故障的宏观诊断就是根据经验,参照发生故障的环境和现象来确定故障的部位和原因。PLC控制系统的故障宏观诊断方法如下: ■是否为使用不当引起的故障,如属于这类故障,则根据使用情况可初步判断出故障类型、发生部位。常见的使用不当包括供电电源故障、端子接线故障、模板安装故障、现场操作故障等。 ■如果不是使用故障,则可能是偶然性故障或系统运行时间较长所引发的故障。对于这类故障可按PLC的故障分布,依次检查、判断故障。首先检查与实际过程相连的传感器、检测开关、执行机构和负载是否有故障:然后检查PLC的I/O模板是否有故障:后检查PLC的CPU是否有故障。 ■在检查PLC本身故障时,可参考PLC的CPU模板和电源模板上的指示灯。 ■采取上述步骤还检查不出故障部位和原因,则可能是系统设计错误,此时要重新检查系统设计,包括硬件设计和软件设计。 PLC控制系统的故障自诊断 故障自诊断是系统可维修性设计的重要方面,是提高系统可靠性必须考虑的重要问题。自诊断主要采用软件方法判断故障部分和原因。不同控制系统自诊断的内容不同。PLC有很强的自诊断能力,当PLC出现自身故障或外围设备故障,都可用PLC上具有的诊断指示功能的发光二极管的亮、灭来查找。 体诊断 根据体检查流程图找出故障点的大方向,逐渐细化,以找出具体故障,如图2所示。 电源故障诊断 电源灯不亮,需对供电系统进行诊断.如果电源灯不亮,首先检查是否有电,如果有电,则下一步就检查电源电压是否合适,不合适就调整电压,若电源电压合适,则下一步就是检查熔丝是否烧坏,如果烧坏就更换熔丝检查电源,如果没有烧坏,下一步就是检查接线是否有误,若接线无误,则应更换电源部件. 运行故障诊断 电源正常,运行指示灯不亮,说明系统已因某种异常而终止了正常运行。检查流程如图3所示. 图3 运行故障诊断流程图 输入输出故障诊断 输人输出是PLC与外部设备进行信息交流的通道,其是否正常工作,除了和输入输出单元有关外,还与联接配线、接线端子、保险丝等元件状态有关。 出现输入故障时,首先检查LED电源指示器是否响应现场元件(如按钮、行程开关等)。如果输入器件被激励(即现场元件已动作),而指示器不亮,则下一步就应检查输入端子的端电压是否达到正确的电压值。若电压值正确,则可替换输入模块。若一个LED逻辑指示器变暗,而且根据编程器件监视器、处理器未识别输入,则输入模块可能存在故障。如果替换的模块并未解决问题且连接正确,则可能是I/O机架或通信电缆出了问题。 出现输出故障时,首先应察看输出设备是否响应LED状态指示器。若输出触点通电,模块指示器变亮,输出设备不响应。那么,首先应检查保险丝或替换模块。若保险丝完好,替换的模块未能解决问题,则应检查现场接线。若根据编程设备监视器显示一个输出器被命令接通,但指示器关闭,则应替换模块。 在诊断输入/输出故障时,佳方法是区分究竟是模块自身的问题,还是现场连接上的问题。如果有电源指示器和逻辑指示器,模块故障易于发现。通常,先是更换模块,或测量输入或输出端子板两端电压测量值正确,模块不响应,则应更换模块。若更换后仍无效,则可能是现场连接出问题了。输出设备截止,输出端间电压达到某一预定值,就表明现场连线有误。若输出器受激励,且LED指示器不亮,则应替换模块。如果不能从I/O模块中查出问题,则应检查模块接插件是否接触不良或未对准。后,检查接插件端子有无断线,模块端子上有无虚焊点。 指示诊断 LED状态指示器能提供许多关于现场设备、连接和I/O模块的信息。大部分输入/输出模块至少有一个指示器。输入模块常设电源指示器,输出模块则常设一个逻辑指示器。 对于输入模块,电源LED显示表明输入设备处于受激励状态,模块中有一信号存在。该指示器单独使用不能表明模块的故障。逻辑LED显示表明输入信号已被输入电路的逻辑部分识别 。如果逻辑和电源指示器不能同时显示,则表明模块不能正确地将输入信号传递给处理器。输出模块的逻辑指示器显示时,表明模块的逻辑电路已识别出从处理器来的命令并接通。除了逻辑指示器外,一些输出模块还有一只保险丝熔断指示器或电源指示器,或二者兼有。保险丝熔断指示器只表明输出电路中的保护性保险丝的状态;输出电源指示器显示时,表明电源已加在负载上。像输入模块的电源指示器和逻辑指示器一样,如果不能同时显示,表明输出模块就有故障了。 锅炉鼓风机和引风机控制的PLC梯形图程序举例 用简单设计法设计一个对锅炉鼓风机和引风机控制的梯形图程序。控制要求: (1)开机前首先启动引风机,10S后自动启动鼓风机; (2)停止时,立即关断鼓风机,经20S后自动关断引风机。 VVO[W`S2NO`D~4]TP{P}A1P
技术指标
1、实心裸铜线导体,2芯并合成对,芯线红绿二色。
2、铝箔、裸金属丝编织双层屏蔽,PVC外护套,阻燃,外观紫色。
3、符合VDE 0472标准;B类试验(IEC332.1)。
4、带米标识,分100米、200米、300米包装,500米、1000米木轮包装。
5、工作参数:单线传输大规格:1000m,加中继器可延长至10000m
==============================
和所有网络一样,电缆的优劣直接影响工业以太网的优劣。而且除了高电磁干扰(EMI),工业环境中还经常有某种等级的温度、粉尘、湿度以及其他在家庭
和办公环境中不常见的影响因素。所以,如何选择电缆?在办公室内,商业等级的电缆,例如5类电缆,比较适合于10MB的网络,而5e类电缆适合于100MB网
根据ANSI/TIA-1005标准所述,6类电缆或者更好的电缆可以用于工业环境中的主机或者设备连接。6类电缆能够在100米的范围内实现1GB网络,55米范围内
现10GB网络。6e类电缆可以在100米范围内实现10GB网络。相比于5类电缆和5e类电缆,6类电缆不易受串扰和外部EMI噪声影响。工业以太网电缆的设计能
御更加严酷的工业环境对电缆的物理侵蚀。在安装6类电缆时,确保RJ45接口和插座也能够达到6类等级。较好的使用方法是,短距离布线时,使用预先做好
接插电缆,并在工厂内安装连接器。长距离布线时使用插座。、电缆、屏蔽、接地回路一些应用场合需要做屏蔽,但是如果屏蔽电缆安装不当, 那么会适得
反。当出保护套管时,屏蔽以太网电缆在EMI环境中的性能更好。良好的接地是使用屏蔽电缆的关键。一个接地参考点是关键中的关键。 多个接地连接会
接地回路,不同接地连接处电势的不同会在电缆中引入噪声。接地回路会给你的网络带来巨大的破坏,为了解决这个问题,只在电缆的一端使用接地RJ45接
口,另一端使用绝缘的RJ45接口以消除接地回路的可能性。如果以太网电缆与电源电缆交叉布线,那么交叉角度颇有讲究。将并列的以太网电缆和电源电缆相
隔至少8到12英寸,如果电压较高或者并列距离较长,那么这个间隔距离应该更大。如果以太网电缆在金属沟槽或者套管内走线,那么相邻的沟槽或者套管必
连接在一起以实现电气连续性。大体来讲,以太网电缆尽量远离能够产生EMI的设备,例如电机、电机控制设备、照明设备、带电导体等。在面板上,以太网
缆与连接器间隔至少2英寸。当电缆远离EMI干扰源时,遵循的电缆弯曲半径。3、交换机VS集线器简单地说,工业以太网环境中不要使用集线器。集线
不过是一个多端口的中继器。如果集线器被排除在外的话,剩下的选择就只有管理型交换机和非管理型交换机了。管理型的交换机更好,当然它的价格也比非
理型的交换机要贵。网络上的每一台设备都有一识符,就是我们所说的MAC地址,这是交换机比集线器具有的识别能力的关键。当交换机刚刚上电的时候,
的表现和集线器没有区别,将所有的通讯内容都广播出去,但随着网络上的设备将信息在交换机的不同端口上传输,交换机开始监控通讯内容,识别出哪一个
地址与哪一个端口相关,然后在MAC地址表中做出标识。一旦交换机发现设备的MAC地址与某个特定的端口相连接,它就会监控指向那个MAC地址的信息,
些信息仅仅发送给那个特定的地址。工业以太网网络有三种通讯类型。点对点的单播通讯、一对多的组播通讯和一点到所有节点的广播通讯。?当交换机的M
址表建立完成之后,管理型交换机和非管理型交换机对单播通讯和广播通讯的处理方式没有什么不同。一般来说,在100MB的带宽下,将广播频度控制在每秒
个广播。对于任何网络来说,都会或多或少地存在广播通讯。一个例子就是打印服务器会周期性地在网络上给出广播通知。:不仅仅是管理型交换机和非管理
换机的一个主要的区别就在于它们对待组播通讯的处理方式。组播通讯通常来自于搭载在工厂过程网络上的智能设备,采用面向连接的基于生产厂商/用户模型术。这种情况下的连接仅仅是网络上两个或者多个节点之间的关系。要想能够接收组内信息,设备必须加入组播通讯小组,组内所有的成员都能够接收到数据。
果仅仅是向小组发送数据,那么你无需成为小组成员。在生产厂商/用户模型中,组播通讯的主要问题就是随着小组成员数量的增加,通讯信息呈指数地增长。就需要使用管理型的交换机了。管理型交换机能够打开互联网组管理协议(IGMP)窥探功能。它是这样工作的,当IGMP窥探功能打开后,它会发出广播通讯任何组播小组内的成员。使用这些信息,加上已经建好的MAC地址表,管理型交换机就能够将组播通讯仅仅发送给组播小组内的成员。非管理型的交换机对组和广播数据的处理方式一样,都是将数据发送给每一个节点。如果网络使用了生产厂商/用户技术或者使用了组播通讯,那么管理型交换机是物有所值的不二之
5、镜像端口、故障排查考虑使用管理型交换机还有很多其他原因,这种等级的交换机通常都提供故障日志功能,能够控制每个端口的速度,具有冗余设置以及镜像功能。这些额外能力能够保证对网络行为进行更加准确的控制,而且在故障排查的时候能起到非常宝贵的作用。我们知道,对于网络上的某些节点,故障是避免的。当网络性能出现问题时,首先就要检查交换机,虽然对于大多数网络性能问题来说,交换机很少是问题的核心。交换机是系统中可能发生问题的节点,的工作速率通常是其他网络部件工作速率的10到50倍。虽然有一种很好的软件能够帮助你对网络故障问题进行排查,但是大多数这种软件仅仅能看到广播通讯播通讯。这实际上很合理,因为很多性能问题通常都源自不受限的组播通讯或者过多的广播通讯。如果你出于某种原因需要检查单播通讯,那么端口镜像的途径。如果网络上没有组播通讯的话,那么使用非管理型的交换机也没什么问题。在只搭载了很少设备的小型简单网络上,很多人使用非管理型的交换机。有时候也可这两种类型的交换机结合使用,将一些远程设备搭载在非管理型的交换机上,统一向管理型的交换机反馈。对于那些节点数量很多的网络,如果成本不是一个关,那么还是选择管理型的交换机吧,事后想来这确实是一个明智的选择。
InterBus现场总线作为IEC61158标准,广泛应用于制造业和机器加工业。汽车生产过程中的物料呼叫控制系统采用InterBus现场总线技术,
在现有生产线上进行生产物流重构,实现了企业同步化物流的需求。 InterBus现场总线作为IEC61158标准,是一种开放型的串行总线系统
其数据传输速度快、效率高,总线控制器和总线设备具有智能化和很强的故障诊断能力,广泛应用于制造业和机器加工业。汽车生产过程中的物料呼叫控制系统采用InterBus现场总线技术,在现有生产线上进行生产物流重构,实现了企业同步化物流的需求。该系统能使物料供应及时、
节省物料线边占用空间、减少线边库存和储位库存,自动统计缺料的工位、时间与频次,有效防止不必要的延误、等待时间和因物料短缺产生停线的问题。控制系统具有在线故障诊断功能,减少了系统故障处理的时间,提高了系统运行的可靠性和工厂生产效率。 物料呼叫控制系统由硬件和软件构成。硬件主要由工控机,现场总线控制器,总线耦合器BK模块,数字输入、输出模块DIO、SAB模块,LED显示屏,灯箱和按钮构成。现场线控制器选用RFC430,其具有数据采集、逻辑控制、信息交换和自动诊断等功能。控制系统软件由控制程序和故障诊断程序组成。控制程序功能如下:根据汽车生产要求,当生产线线边库存低于较低值时,生产工人按下工位上对应的按钮,总线控制器根据回送的过程数据,通过一种基于InterBus现场总线的通信模块,发送该物料的名称、工位号数量等信息到LED大屏幕显示屏,同时启动音乐铃声和灯箱上对应该物料的指示灯。仓库工作人员得到信息后,按下灯箱指示灯下面对应的按钮,表示信息确认,已开始投料。总线控制器根据确认的信息,将工位按钮上方的指示灯由常亮转为闪亮状态,表示该物料正在投送中。当物流到达呼叫的工位后,操作人员恢复按钮,该物料配送过程结束。该物料的名称、呼叫工位、呼叫时间、到位时间、投料人等信息记入上位机的数据库,作为管理人员考核员工的一项指标。故障诊断程序包括运行在控制器上的诊断和自启动程序和运行在上位机(工控机)上的OPC(OLE for Process Control)应用程序。控制系统一旦出现故障,总线便停止运行。在线故障诊断程序可以快速诊断故障原因,并应用OPC技术将RFC430总线控制器的诊断信息传送到上位机,上位机根据控制器传送的诊断信息,采用数据库技术为管理层提供更为详细的故障原因以及处理方法。因此,一旦控制系统出现故障,值班人员就能根据故障诊断信息以及处理方法迅速排除故障。故障排除后,系统能自动启动总线,恢复正常运行。InterBus总线控制器RF430中的标准寄存器提供了总线运行的状态信息,也可通过控制程序操作总线系统。总线控制器中的标准寄存器包括诊断状态寄存器、诊断参数寄存器、标准功能启动寄存器、标准功能状态寄存器和标准功能参数寄存器。寄存器的地址可利用PCWORX组态软件在控制系统的输入或输出地址区域设定,以便在编程中应用。诊断状态寄存器为一个字长,每一位都反映了总线系统运行状态的某一方面情况。诊断参数寄存器为诊断状态寄存器的状态位提供更为详细的信息,当外围设备出现故障和总线出错时,诊断参数寄存器提供错误位置;当控制器和总线出错时,诊断参数寄存器提供错误代码。诊断和自启动程序在PC WORX 2.02中功能编程软件Program Worx上开发,采用ST(结构化文本)语言编程,编程后封装能模块FCDIAG(见图1)。该模块以诊断状态寄存器、诊断参数寄存器作为输入,经过处理之后把诊断信息赋给全局部变量ERR DIAG STATUS 和ERR DIAG_A。自启动功能可以检测故障是否清除,一旦检测到故障已经清除后,通过标准功能启动寄存器,
信号灯控制系统——以转换为中心的编程方式梯形图举例 如图5-29所示为以转换为中心的编程方式设计的梯形图与功能表图的对应关系。图中要实现Xi对应的转换必须同时满足两个条件:前级步为活动步(Mi-1=1)和转换条件满足(Xi=1),所以用Mi-1和Xi的常开触点串联组成的电路来表示上述条件。两个条件同时满足时,该电路接通时,此时应完成两个操作:将后续步变为活动步(用SET Mi指令将Mi置位)和将前级步变为不活动步(用RST Mi-1 指令将Mi-1复位)。这种编程方式与转换实现的基本规则之间有着严格的对应关系,用它编制复杂的功能表图的梯形图时,更能显示出它的优越性。 图5-29 以转换为中心的编程方式 如图5-30所示为某信号灯控制系统的时序图、功能表图和梯形图。初始步时仅红灯亮,按下起动按钮X0,4s后红灯灭、绿灯亮,6s后绿灯和黄灯亮,再过5s后绿灯和黄灯灭、红灯亮。按时间的先后顺序,将一个工作循环划分为4步,并用定时器T0~T3来为3段时间定时。开始执行用户程序时,用M8002的常开触点将初始步M300置位。按下起动按钮X0后,梯形图第2行中M300和X0的常开触点均接通,转换条件X0的后续步对应的M301被置位,前级步对应的辅助继电器M300被复位。M301变为“1”状态后,控制Y0(红灯)仍然为“l”状态,定时器T0的线圈通电,4s后T0的常开触点接通,系统将由第2步转换到第3步,依此类推。 图5-30 某信号灯控制系统 a)时序图 b)功能表图 c)以转换为中心编程的梯形图 使用这种编程方式时,不能将输出继电器的线圈与SET、RST指令并联,这是因为图5-30中前级步和转换条件对应的串联电路接通的时间是相当短的,转换条件满足后前级步马上被复位,该串联电路被断开,而输出继电器线圈至少应该在某一步活动的全部时间内接通。 小车控制系统——使用STL指令的编程方式梯形图举例 许多PLC厂家都设计了专门用于编制顺序控制程序的指令和编程元件,如美国GE公司和GOULD公司的鼓形控制器、日本东芝公司的步进顺序指令、三菱公司的步进梯形指令等。 步进梯形指令(Step Ladder Instruction)简称为STL指令。FX系列就有STL指令及RET复位指令。利用这两条指令,可以很方便地编制顺序控制梯形图程序。 FX2N系列PLC的状态器S0~S9用于初始步,S10~S19用于返回原点,S20~S499为通用状态,S500~S899有断电保持功能,S900~S999用于报警。用它们编制顺序控制程序时,应与步进梯形指令一起使用。FX系列还有许多用于步进顺控编程的特殊辅助继电器以及使状态初始化的功能指令IST,使STL指令用于设计顺序控制程序更加方便。 使用STL指令的状态器的常开触点称为STL触点,它们在梯形图中的元件符号如图5-31所示。图中可以看出功能表图与梯形图之间的对应关系,STL触点驱动的电路块具有三个功能:对负载的驱动处理、转换条件和转换目标。 图5-31 STL指令与功能表图 除了后面要介绍的并行序列的合并对应的梯形图外,STL触点是与左侧母线相连的常开触点,当某一步为活动步时,对应的STL触点接通,该步的负载被驱动。当该步后面的转换条件满足时,转换实现,即后续步对应的状态器被SET指令置位,后续步变为活动步,同时与前级步对应的状态器被系统程序自动复位,前级步对应的STL触点断开。 使用STL指令时应该注意以下一些问题: 1)与STL触点相连的触点应使用LD或LDI指令,即LD点移到STL触点的右侧,直到出现下一条STL指令或出现RET指令,RET指令使LD点返回左侧母线。各个STL触点驱动的电路一般放在一起,后一个电路结束时—定要使用RET指令。 2)STL触点可以直接驱动或通过别的触点驱动Y、M、S、T等元件的线圈,STL触点也可以使Y、M、S等元件置位或复位。 3)STL触点断开时,CPU不执行它驱动的电路块,即CPU只执行活动步对应的程序。在没有并行序列时,任何时候只有一个活动步,因此大大缩短了扫描周期。 4)由于CPU只执行活动步对应的电路块,使用STL指令时允许双线圈输出,即同一元件的几个线圈可以分别被不同的STL触点驱动。实际上在一个扫描周期内,同一元件的几条OUT指令中只有一条被执行。 5)STL指令只能用于状态寄存器,在没有并行序列时,一个状态寄存器的STL触点在梯形图中只能出现一次。 6)STL触点驱动的电路块中不能使用MC和MCR指令,但是可以使用CJP和EJP指令。当执行CJP指令跳人某一STL触点驱动的电路块时,不管该STL触点是否为“1”状态,均执行对应的EJP指令之后的电路。 7)与普通的辅助继电器一样,可以对状态寄存器使用LD、LDI、AND、ANI、OR、ORI、SET、RST、OUT等指令,这时状态器触点的画法与普通触点的画法相同。 8)使状态器置位的指令如果不在STL触点驱动的电路块内,执行置位指令时系统程序不会自动将前级步对应的状态器复位。 如图5-32所示小车一个周期内的运动路线由4段组成,它们分别对应于S31~S34所代表的4步,S0代表初始步。 图5-32 小车控制系统功能表图与梯形图 假设小车位于原点(左端),系统处于初始步,S0为“1”状态。按下起动按钮X4,系统由初始步S0转换到步S31。S31的STL触点接通,Y0的线圈“通电”,小车右行,行至右端时,限位开关X3接通,使S32置位,S31被系统程序自动置为“0”状态,小车变为左行,小车将这样一步一步地顺序工作下去,后返回起始点,并停留在初始步。图5-32中的梯形图对应的指令表程序如表5-3所示.。 表5-3 小车控制系统指令表 LD SET STL LD SET STL M8002 S0 S0 X4 S31 S31 OUT LD SET STL OUT LD Y0 X3 S32 S32 Y1 X1 SET STL OUT LD SET STL S33 S33 Y0 X2 S34 S34 OUT LD SET RET Y1 X0 S0


SIMATIC NET, PROFIBUS 快速标准电缆 GP, 2 芯, 屏蔽, 为快速安装而特殊设计,**长度: 1000m, 小订购数量: 20m, 按米销售
用于网络电缆的 UL 列表(安全标准)对于美国和加拿大市场尤为必需。根据电缆敷设在建筑物中位置来决定适当的要求。这适用所有电缆,这些电缆从一个机器敷设到一远程控制柜,位于电缆架上并保护着建筑物。通过 UL 的电缆在其名称后面附加字母“GP”(通用)。
Ex
用于本质安全 PROFIBUS DP 应用的电缆在其名称后面附加字母“IS”(本质安全)
SIMATIC NET, PROFIBUS 快速标准电缆 GP, 2 芯, 屏蔽, 为快速安装而特殊设计,**长度: 1000m, 小订购数量: 20m, 按米销售
全新原装,价格优惠,现货销售,您的选择从这里开始!欢迎来电咨询订购!
西门子电缆公司的西门子电缆Profibus FC快速连接标准电缆,总线电缆径向对称设计,允许采用剥线工具,可以快速、方便的装配总线连接器。标准总线电缆专门为装配设计
实心裸铜线导体,2芯并合成对,芯线红绿二色。西门子电缆
铝箔、裸金属丝编织双层屏蔽,PVC外护套,外观紫色。
符合VDE 0472标准;B类试验(IEC332.1)。
带米标识,分100米、200米、300米包装,500米、1000米木轮包装。
工作参数:单线传输**规格:1000m,加中继器可延长至10000m
订货数据 订货号
Profibus总线电缆 6XV1830-0EH10 西门子电缆线
这是西门子很常见的通讯线缆。

西门子电缆公司前言
现场总线技术是当今世界各国关注的热点课题,以现场总线为基础的全数字控制系统是 21 世纪自动化控制系统的主流。PROFIBUS-DP是一种经过优化的高速、廉价的通信连接,专为自动控制系统和设备级分散I/O之间通信设计,使用PROFIBUS-DP模块可取代价格昂贵的24V或0~20mA并行信号线,用于分布式控制系统的高速数据传输。PROFIBUS-DP主要应用于现场设备级,它的响应时间从几百 到几百ms,数据传输速率为9.6kbit/s~12Mbit/s,传输的数据容量为每个报文多达244个字节,传输介质为屏蔽双绞线或光缆,被广泛应用于楼宇自动化、水电厂管理和工业过程自动化控制系统中。
2 软起动控制器中PROFIBUS-DP通讯接口的硬件设计
在软起动控制器的PROFIBUS-DP硬件接口电路设计方案上,采用单片机 + 集成芯片SPC3 + RS485驱动的方案。
2.1 SPC3简述
SPC3(SIEMENS PROFIBUS CONTROLLER)为优化的智能PROFIBUS-DP从站,集成有PROFIBUS-DP物理层的数据收发功能,可独立处理PROFIBUS-DP协议。SPC3的内部有RAM、方式寄存器、状态寄存器、中断寄存器以及各种缓冲器指针和缓冲区等。SPC3有8根数据线和11根地址线,其中8根数据线与地址线复用,可以接80C32、80C166、80C196、HC196等单片机。SPC3内部集成了1.5KB的双口RAM作为SPC3与软件/程序的接口,能自动调整9.6K到12M波特率。
2.2 PROFIBUS-DP通信接口硬件设计
PIC16F877与PROFIBUS-DP网络的连接通过一个PROFIBUS-DP网络的协议芯片SPC3和RS-485驱动电路组成。PROFIBUS-DP接口主要由处理器接口和串行总线接口组成。
处理器接口电路如图1示:80C32通过P0口和P2口扩展外部存储器,将SPC3内部的双口RAM作为自己的外部RAM,通过对双口RAM的读写来完成对SPC3的初始化和有关数据的交换。图中P1是指用双PIC16F877设计的软起动控制器,作为通讯的从站,PIC16F877集成了SPI接口,可以和协议芯片SPC3结合,以及MAX485ESA完成到PROFIBUS-DP总线网络上的连接。
PLC的指令格式中各部分内容分类介绍 指令格式中各部分内容说明如下: (1)控制条件 控制条件的数量和意义随功能指令的不同而变化。控制条件存入堆栈寄存器中,其顺序是固定不变的。 (2)指令 功能指令的种类见表5-4 序号 指 令 处 理 内 容 格式1 (梯形图) 格式2 (纸带穿孔与程序显示) 格式3 (程序输入) 1 END1 SUB1 S1 1级(高级)程序结束 2 END2 SUB2 S2 2级程序结束 3 END3 SUB48 S48 3级程序结束 4 TMR TMR T 定时器处理 5 TMRB SUB24 S24 固定定时器处理 6 DEC DEC D 译码 7 CTR SUB5 S5 计数处理 8 ROT SUB6 S6 旋转控制 9 COD SUB7 S7 代码转换 10 MOVE SUB8 S8 数据“与”后传输 11 COM SUB9 S9 公共线控制 12 COME SUB29 S29 公共线控制结束 13 JMP SUB10 S10 跳转 14 JMPE SUB30 S30 跳转结束 15 PARI SUB11 S11 奇偶检查 16 DCNV SUB14 S14 数据转换(二进制 BCD码) 17 COMP SUB15 S15 比较 18 COIN SUB16 S16 符合检查 19 DSCH SUB17 S17 数据检索 20 XMOV SUB18 S18 变址数据传输 21 ADD SUB19 S19 加法运算 22 SUB SUB20 S20 减法运算 23 MUL SUB21 S21 乘法运算 24 DIV SUB22 S22 除法运算 25 NUME SUB23 S23 定义常数 26 PACTL SUB25 S25 位置Mate-A 27 CODE SUB27 S27 二进制代码转换 28 DCNVE SUB31 S31 扩散数据转换 29 COMPB SUB32 S32 二进制数比较 30 ADDB SUB36 S36 二进制数加 31 SUBB SUB37 S37 二进制数减 32 MULB SUB38 S38 二进制数乘 33 DIVB SUB39 S39 二进制数除 34 NUMEB SUB48 S40 定义二进制常数 35 DISP SUB49 S49 在NC的CTR上显示信息 指令的三种格式,格式1用于梯形图;格式2用于纸带穿孔和程序显示;格式3是用编程器输入程序时的简化指令。对TMR和DEC指令在编程器上有其指令键,其他功能指令则用SUB键和其后的数字键输入。 (3)参数 功能指令不同于基本指令,可以处理各种数据,也就是说数据或存有数据的地址可作为功能指令的参数,参数的数目和含义随指令的不同而不同。 (4)输出 功能指令的执行情况可用一位“1”和“0”表示时,把它输出到Wl继电器,Wl继电器的地址可随意确定。但有些功能指令不用Wl,如MOVE、COM、JMP等。 (5)需要处理的数据 由功能指令管理的数据通常是BCD码或二进制数。如4位数的BCD码数据是按一定顺序放在两个连续地址的存储单元中,分低两位和高两位存放。例如BCD码1234被存放在地址200和201中,则200中存低两位(34),201中存高两位(12)。在功能指令中只用参数低字节的200地址。二进制代码数据可以由l字节、2字节、4字节数据组成,同样是低字节存在小地址,在功能指令中也是用参数小地址。 PLC执行程序的过程分为哪三个阶段? PLC执行程序的过程分为三个阶段,即输入采样阶段、程序执行阶段、输出刷新阶段,PLC的扫描工作过程: (1)输入采样阶段。在这一阶段中,PLC以扫描方式读入所有输入端子上的输入信号,并将各输入状态存入对应的输入映像寄存器中。此时,输入映像寄存器被刷断。在程序执行阶段和输出刷新阶段中,输入映像存储器与外界隔离,其内容保持不变,直至下一个扫描周期的输入扫描阶段,才被重新读入的输入信号刷新。可见,PLC在执行程序和处理数据时,不直接使用现场当时的输入信号,而使用本次采样时输入到映像区中的数据。一般来说,输入信号的宽度要大于一个扫描周期,否则可能造成信号的丢失。 (2)程序执行阶段。在执行用户程序过程中,PLC按照梯形图程序扫描原则,一般来说,PLC按从左至右、从上到下的步骤逐个执行程序。但遇到程序跳转指令,则根据跳转条件是否满足来决定程序跳转地址。程序执行过程中,当指令中涉及输入、输出状态时,PLC就从输入映像寄存器中“读入”对应输入端子状态,从输出映像寄存器“读入”对应元件(“软继电器”)的当前状态。然后进行相应的运算,运算结果再存入输出映像寄存器中。对输出映像寄存器来说,每一个元件(“软继电器”)的状态会随着程序执行过程而变化。 (3)输出刷新阶段。程序执行阶段的运算结果被存入输出映像区,而不送到输出端口上。在输出刷新阶段,PLC将输出映像区中的输出变量送入输出锁存器,然后由锁存器通过输出模块产生本周期的控制输出。如果内部输出继电器的状态为“1”,则输出继电器触点闭合,经过输出端子驱动外部负载。全部输出设备的状态要保持一个扫描周期。 什么是PLC的响应时间?在输出采用循环刷新和直接刷新方式时,响应时间有何区别? 从PLC收到一个输入信号到PLC向输出端输出一个控制信号所需的时间,就是PLC的响应时间,使用循环刷新时,在一个扫描周期的刷新阶段开始前瞬间收到一个信号,则在本周期内该信号就起作用了,这时响应时间短,等于输入延时时间、一个扫描周期时间、输出延迟时间三者之和;如果在一个扫描周期的I/O更新阶段刚过就收到一个信号,则该信号在本周期内不能起作用,必须等到下一个扫描周期才能起作用,这时响应时间长,它等于输入延迟时间、两个扫描周期时间与输出延迟时间三者之和;在使用直接输出刷新时,长响应时间等于输入延迟时间、一个扫描周期时间、输出延迟时间三者之和。