西门子SM321信号模块6ES7321-1CH20-0AA0
公司主营:数控系统,S7-200PLC S7-300PLC S7-400PLC S7-1200PLC 6ES5 ET200 人机界面,变频器,DP总线,MM420 变频器MM430 变频器MM440 6SE70交流工程调速变频器6RA70直流调速装置 SITOP电源,电线电缆,数控备件,伺服电机等工控产品 2、PLC选型匹配较复杂,请客户务必确认核实好型号参数货期等问题后在进行采购,
詹 850-111 59 0
PLC输入和输出指令说明与举例 LD:逻辑取指令,从母线开始取常开触点。 LDI:逻辑取反指令,从母线开始取常闭触点。 OUT:线圈的驱动指令。 指令说明: 1.LD、LDI指令用于将触点接到母线上。 2.OUT指令是对输出继电器、辅助继电器、状态定时器、计数器的线圈驱动指令,对输入继电器不能使用。 3.OUT指令可作多次并联使用。 举例: (1) 梯形图 :如图 (2) 程序清单 LD X000 OUT Y000 END ? 在分析PLC控制系统的功能时,可以将它想象成一个继电器控制系统中的控制箱,其外部接线图描述了这个控制箱的外部接线,梯形图是这个控制箱的内部“线路图”,梯形图中的输入继电器和输出继电器是这个控制箱与外部世界联系的“接口继电器”,这样就可以用分析继电器电路图的方法来分析PLC控制系统。在分析时可以将梯形图中输入继电器的触点想象成对应的外部输入器件的触点或电路,将输出继电器的线圈想象成对应的外部负载的线圈。外部负载的线圈除了受梯形图的控制外,还可能受外部触点的控制。 图1是某摇臂钻床的继电器控制电路原理图。钻床的主轴电机用接触器KM1控制,摇臂的升降电机用KM2和KM3控制,立柱的松开和夹紧电机用KM4和KM5控制。图2和图4-16是实现具有相同功能的PLC的外部接线图和梯形图。 将继电器电路图转换为功能相同的PLC的外部接线图和梯形图的步骤如下: 了解和熟悉被控设备的工艺过程和机械的动作情况,根据继电器电路图分析和掌握控制系统的工作原理,这样才能做到在设计和调试控制系统时心中有数。 2 )确定PLC的输入信号和输出负载,画出PLC的外部接线图。 继电器电路图中的交流接触器和电磁阀等执行机构用PLC的输出继电器来控制,它们的线圈接在PLC的输出端。按钮、控制开关、限位开关、接近开关等用给PLC提供控制合作和反馈信号,它们的触点接在PLC的输入端。继电路图中的中间继电器和时间继电器的功能用PLC内部的辅助继电器和定时器来完成,它们与PLC的输入继电器和输出继电器无关。 画出PLC的外部接线图后,同时也确定了PLC的各输入信号和输出负载对应的输入继电器和输出继电器的元件号。例如图2中控制摇臂上升的按钮SB3接在PLC的X0输入端子上,该控制信号在梯形图中对应的输入继电器的元件号X0。在梯形图中,可以将X0的触点想象为SB3的触点。 3)确定与继电器电路图的中间继电器、时间继电路对应的梯形图中的辅助继电器(M)和定时器(T)的元件号。 第2步和第3步建立了继电器电路图中的元件和梯形图中的元件
西门子DP总线连接器/代理,DP总线连接器适用于宽温度范围(-25 °C 至 +60 °C)并具有优异防恶劣环境性能(覆膜涂层)的 SIPLUS 模块
2)软总线电缆不适用于这种接头
西门子DP总线连接器/代理
由于其连接方法简捷,可快速调试
因采用冗余网络拓扑结构,具有高可用性
采用简单、有效的信令概念,持续监控网络部件
通过工厂范围内的时钟控制,可实现整个工厂范围内基于时间的准确事件分配
由于现有网络容易扩展,且无任何不利影响,具有高度灵活性
是系统范围内实现联网的基础(垂直集成)
是 PROFINET 的基础
由于在必要时可通过交换技术获得扩展性能,以太网的通讯性能几乎不受限制
可实现不同应用领域的联网,例如办公环境与生产环境
用于苛刻工业环境的网络部件
通过具有 RJ45 技术的 FastConnect 电缆接线系统进行快速本地组装
通过高速冗余和冗余电源实现故障安全网络
通过持续的兼容性开发而获得投资保护
因具有接口选件,可通过 WAN(广域网)并使用 Internet 服务实现公司范围内的通讯
通过 SCALANCE W,西门子公司的 IWLAN(工业无线局域网)为无故障地连接具有可靠无线通讯功能的移动站提供了基础
工业无线局域网(IWLAN)的数据储备
快速漫游,用于不同网络接入点间移动站的快速传播
通过采用西门子 SCALANCE S 和 SOFTNET 安全客户端的安全概念,能够保护网络与数据
控制层上大量数据的千兆通讯,如 WinCC,web 应用程序,多媒体应用程序等
西门子DP总线连接器/代理
PROFINET
基于工业以太网,PROFINET 实现了现场设备(IO 设备)与控制器(IO 控制器)的直接通讯,并可提供运动控制应用等时驱动控制解决方案。
通过组件的工程与组态(基于组件的自动化),PROFINET 还支持分布式自动化系统。
媒体冗余协议(MRP)
西门子DP电缆西门子电缆 西门子通讯电缆 西门子紫色电缆 西门子PROFIBUSDP通讯电缆 西门子拖曳电缆 西门子拖缆 西门子软线,,西门子现场总线线,西门子拖缆,西门子DP总线 西门子DP现场总线 西门子PROFIBUS电缆 西门子PROFIBUS通讯电缆 西门子现场总线 西门子DP通讯电缆
屏蔽的双绞电缆,圆形截面
所有 PROFIBUS 总线电缆的特点:
因为双屏蔽作用,这些电缆特别适合用于易受电磁干扰的工业环境中。
通过总线电缆外皮和总线端子上的接地端子,能实现系统范围内的接地方案。
印有以米表示的标记
电缆类型
全新的快速连接(FC)总线电缆为径向对称设计,可使用剥线工具。以此,可以快速、简便地安装总线接头。
PROFIBUS FC 标准电缆GP:
标准总线电缆专门为快速安装而设计的
PROFIBUS FC 标准电缆 IS GP:
具有特殊设计的标准总线电缆,用于快速安装本质安全分布式 I/O 系统
PROFIBUS FC 快速连接高强度电缆:
专门设计用于腐蚀环境和苛刻机械负荷条件
PROFIBUS FC 食用电缆:
该种电缆使用 PE 外套材料,因此适用于食品和烟草行业。
PROFIBUS FC 接地电缆:
于地下敷设。它不同于装备有附加外套的 PROFIBUS 总线电缆
PROFIBUS FC软电缆
柔性(绞合导线)、无卤素总线电缆,带聚氨酯护套,可偶然移动
PROFIBUS FC 拖缆:
于在拖缆中强制运动控制的总线电缆,例如在连续运动的机器部件中(绞合导线)
PROFIBUS FC FRNC 电缆:
双芯屏蔽,阻燃设计,无卤总线电缆,有一个共聚物外壳 FRNC(阻燃无腐蚀)
不采用快速连接技术的总线电缆(取决于结构类型)
信号灯控制系统——以转换为中心的编程方式梯形图举例
如图5-29所示为以转换为中心的编程方式设计的梯形图与功能表图的对应关系。图中要实现Xi对应的转换必须同时满足两个条件:前级步为活动步(Mi-1=1)和转换条件满足(Xi=1),所以用Mi-1和Xi的常开触点串联组成的电路来表示上述条件。两个条件同时满足时,该电路接通时,此时应完成两个操作:将后续步变为活动步(用SET Mi指令将Mi置位)和将前级步变为不活动步(用RST Mi-1 指令将Mi-1复位)。这种编程方式与转换实现的基本规则之间有着严格的对应关系,用它编制复杂的功能表图的梯形图时,更能显示出它的优越性。
图5-29 以转换为中心的编程方式
如图5-30所示为某信号灯控制系统的时序图、功能表图和梯形图。初始步时仅红灯亮,按下起动按钮X0,4s后红灯灭、绿灯亮,6s后绿灯和黄灯亮,再过5s后绿灯和黄灯灭、红灯亮。按时间的先后顺序,将一个工作循环划分为4步,并用定时器T0~T3来为3段时间定时。开始执行用户程序时,用M8002的常开触点将初始步M300置位。按下起动按钮X0后,梯形图第2行中M300和X0的常开触点均接通,转换条件X0的后续步对应的M301被置位,前级步对应的辅助继电器M300被复位。M301变为“1”状态后,控制Y0(红灯)仍然为“l”状态,定时器T0的线圈通电,4s后T0的常开触点接通,系统将由第2步转换到第3步,依此类推。
图5-30 某信号灯控制系统
a)时序图 b)功能表图 c)以转换为中心编程的梯形图
使用这种编程方式时,不能将输出继电器的线圈与SET、RST指令并联,这是因为图5-30中前级步和转换条件对应的串联电路接通的时间是相当短的,转换条件满足后前级步马上被复位,该串联电路被断开,而输出继电器线圈至少应该在某一步活动的全部时间内接通。
PROFIBUS 彩色电缆:
软总线电缆(成束线),用于花彩线。
用于圆电缆,用于电缆运输车模式
PROFIBUS 扭转电缆
高度灵活用总线电缆:
用于移动机器部件的拖缆(绞线)
(在长 1 m电缆上能至少扭转 500 万次,± 180o)
PROFIBUS 混合电缆 GP:
适合拖曳的坚固混合电缆,带有两条用于数据传输的铜导线和两条用于 ET 200pro 的电源的铜导线
SIENOPYR FR 船用电缆
无卤素、抗踩压、阻燃、经过船级社的光纤电缆,可安装在船甲板及船舱内。按米销售
InterBus现场总线作为IEC61158标准,广泛应用于制造业和机器加工业。汽车生产过程中的物料呼叫控制系统采用InterBus现场总线技术,
在现有生产线上进行生产物流重构,实现了企业同步化物流的需求。 InterBus现场总线作为IEC61158标准,是一种开放型的串行总线系统
其数据传输速度快、效率高,总线控制器和总线设备具有智能化和很强的故障诊断能力,广泛应用于制造业和机器加工业。汽车生产过程中的物料呼叫控制系统采用InterBus现场总线技术,在现有生产线上进行生产物流重构,实现了企业同步化物流的需求。该系统能使物料供应及时、
节省物料线边占用空间、减少线边库存和储位库存,自动统计缺料的工位、时间与频次,有效防止不必要的延误、等待时间和因物料短缺产生停线的问题。控制系统具有在线故障诊断功能,减少了系统故障处理的时间,提高了系统运行的可靠性和工厂生产效率。 物料呼叫控制系统由硬件和软件构成。硬件主要由工控机,现场总线控制器,总线耦合器BK模块,数字输入、输出模块DIO、SAB模块,LED显示屏,灯箱和按钮构成。现场线控制器选用RFC430,其具有数据采集、逻辑控制、信息交换和自动诊断等功能。控制系统软件由控制程序和故障诊断程序组成。控制程序功能如下:根据汽车生产要求,当生产线线边库存低于较低值时,生产工人按下工位上对应的按钮,总线控制器根据回送的过程数据,通过一种基于InterBus现场总线的通信模块,发送该物料的名称、工位号数量等信息到LED大屏幕显示屏,同时启动音乐铃声和灯箱上对应该物料的指示灯。仓库工作人员得到信息后,按下灯箱指示灯下面对应的按钮,表示信息确认,已开始投料。总线控制器根据确认的信息,将工位按钮上方的指示灯由常亮转为闪亮状态,表示该物料正在投送中。当物流到达呼叫的工位后,操作人员恢复按钮,该物料配送过程结束。该物料的名称、呼叫工位、呼叫时间、到位时间、投料人等信息记入上位机的数据库,作为管理人员考核员工的一项指标。故障诊断程序包括运行在控制器上的诊断和自启动程序和运行在上位机(工控机)上的OPC(OLE for Process Control)应用程序。控制系统一旦出现故障,总线便停止运行。在线故障诊断程序可以快速诊断故障原因,并应用OPC技术将RFC430总线控制器的诊断信息传送到上位机,上位机根据控制器传送的诊断信息,采用数据库技术为管理层提供更为详细的故障原因以及处理方法。因此,一旦控制系统出现故障,值班人员就能根据故障诊断信息以及处理方法迅速排除故障。故障排除后,系统能自动启动总线,恢复正常运行。InterBus总线控制器RF430中的标准寄存器提供了总线运行的状态信息,也可通过控制程序操作总线系统。总线控制器中的标准寄存器包括诊断状态寄存器、诊断参数寄存器、标准功能启动寄存器、标准功能状态寄存器和标准功能参数寄存器。寄存器的地址可利用PCWORX组态软件在控制系统的输入或输出地址区域设定,以便在编程中应用。诊断状态寄存器为一个字长,每一位都反映了总线系统运行状态的某一方面情况。诊断参数寄存器为诊断状态寄存器的状态位提供更为详细的信息,当外围设备出现故障和总线出错时,诊断参数寄存器提供错误位置;当控制器和总线出错时,诊断参数寄存器提供错误代码。诊断和自启动程序在PC WORX 2.02中功能编程软件Program Worx上开发,采用ST(结构化文本)语言编程,编程后封装能模块FCDIAG(见图1)。该模块以诊断状态寄存器、诊断参数寄存器作为输入,经过处理之后把诊断信息赋给全局部变量ERR DIAG STATUS 和ERR DIAG_A。自启动功能可以检测故障是否清除,一旦检测到故障已经清除后,通过标准功能启动寄存器,
了解了PROFIBUS的各个网络器件,这里就PROFIBUS安装的注意事项进行介绍,同时会结合一些现场的实例加以说明。
设计一条PROFIBUS网络,首先需要了解PROFIBUS网络的拓扑规则:
① PROFIBUS网络是RS485串口通讯,半双工,支持光纤通讯;
② 每个网络理论上多可连接127个物理站点,其中包括主站、从站以及中继设备;
③ 网络的通讯波特率9.6kbps~12Mbps,通讯波特率与通讯的距离具有一定的对应关系(见表3);
④ 每个物理网段多32个物理站点设备,物理网段两终端都需要设置终端电阻或使用有源终端电阻;
⑤ 每个网段的通讯距离或者设备数如果限,需要增加RS485中继器进行网络拓展,中继器多可串联9个;
⑥ 每个中继设备(RS485中继器、OLM)也做为网络中的一个物理站点,但没有站号;
⑦ 网络支持多主站,但在同一网络中,不建议多于3个主站;
⑧ 在Step7软件中进行PROFIBUS网络组态时,应当按照从小到大的顺序设置从站站号,且应该连续;
⑨ 一般0是PG的地址,1~2为主站地址,126为某些从站默认的地址,127是广播地址,因而这些地址一般不再分配给从站,故DP从站多可连接124个,站号设置一般为 3~125。
⑩ 如果网络中涉及到分支电缆,则应注意分支电缆的长度应当严格遵守PROFIBUS的协议规定,比如:波特率1.5Mbps时,网段中分支电缆长度6.6米(表5)。
波特率 [kbit/s] |
9.6 |
97.75 |
187.5 |
500 |
1500 |
分支电缆 长度(m) |
500 |
100 |
33 |
20 |
6.6 |
? 表5 波特率与分支电缆的长度对应表
? 用户如果使用了西门子的SIMOCODE 3UF7等产品时,就会涉及到网络中存在分支电缆的问题。为了保证每个网段的分支电缆不过规定长度,一般可以在每个抽屉柜内设计一个中继器,进行物理网段的分割,同时还可以起到隔离干扰的作用。
在进行PROFIBUS网络连接之前,首先应当考虑拓扑结构的设计是否有问题。如果拓扑结构有问题,将来网络通讯很可能出现问题。
另外,从波特率与距离的对应关系中可以看到,波特率越高,则对应的通讯距离越近,因而如果现场遇到PROFIBUS的通讯有通讯不上或者通讯不稳定的情况,也可以考虑先将波特率降低,再进行观察处理。
①选择标准PROFIBUS通讯电缆
标准PROFIBUS通讯电缆的特性阻抗为150欧姆,这与PB头的终端电阻设置为“ON”时的终端电阻值刚好匹配,如果选择普通的电缆,其特性阻抗与终端电阻很可能不匹配,则通讯性能将会受到影响;
标准的PROFIBUS电缆往往是双层屏蔽的,屏蔽效果比较好。另外,标准通讯电缆是双绞的,因而对于信号在电缆内传输时自身产生的干扰也能够起到自我抑制的作用。
②屏蔽层多点接地
PROFIBUS电缆在插头内接线时,须将屏蔽层剥开,压在插头内的金属部分,该金属部分与当Sub-D插头外部的金属部分相连,当将插头插在CPU或者ET200M等设备的DP口上时,则通过设备连接到了安装底板,而安装底板一般是连接在柜壳上并接地的,从而实现了屏蔽层的接地。
图23 PROFIBUS 插头内部接线即屏蔽层的处理
由于接地有利于保护PLC设备以及DP通讯口,因此对于所有的PROFIBUS站点都要求进行接地处理,即“多点接地”。
③布线规则
高电压,大电流的动力电缆,与小电压和小电流的电缆应该是分线槽布线,同时线槽应盖上盖板,尽量全封闭;如果现场无法分线槽布线,则将两类电缆尽量远离,中间加金属隔板进行隔离,同时金属线槽要做接地处理(图24)。
图24 电缆槽架以及电缆在线槽内的处理
图25 现场布线
电缆槽架之间也的连接应该保证用金属连接部件大面积连接处理,同时注意“接地”的连接。
图26 电缆桥架之间的连接以及接地处理
图27 现场的通讯电缆
图26中的电缆通讯直接暴露在外面,很容易被压断,类似情况可考虑局部或者全部穿管。
由于平行布线的两根电缆之间需要考虑空间电容耦合,因此为了避免相互之间的影响,应避免平行布线(图27)。
图28 通讯电缆在线槽内与动力电缆平行走线
在图27中,通讯电缆不仅没有满足a. 或 b. 两条原则,反而与比较大的动力电缆平行布线,这会导致该电缆比较容易受到动力电缆的干扰。
可以交叉布线:
两根交叉布线的电缆相互之间不会因为容性耦合而产生干扰。
图29 通讯电缆贴近金属板
通讯电缆应与大面积的金属板或“地平面”贴近。
图30 通讯电缆形成环
此时如果有磁力线从环中间穿过时,根据“右手定律”,容易产生干扰信号。
在图30中,尽管背板是比较大的金属板,但由于项目已经完成,因而不存在电缆长度变化的可能,因此还是建议用户将过长的电缆剪短,放入柜内的电缆槽内。
PROFIBUS 连接的站点可能分布较广,为了保证通讯的质量,一般要求所有通讯站点都应该处于同一个电压等级上,即应当都是“等电势”的(图31)。
图31 通讯站点之间应做“等电势”处理
如果两个站点的“地”之间不等电势,则当两个设备分别各自接地时,将会在两个接地点之间产生电势差,此时电流会流过通讯电缆的屏蔽层,从而对通讯产生影响。因此应该在两个设备之间进行等电势的绑定。
可以用等势线将两个设备的“地”进行连接,等势线的规格为:铜 6mm2 ,铝 16mm2,钢 50mm2 。
当然,这里不是要求所有的现场都需要增加额外的等势线而增加成本,只是建议在出现接地点电势不相等的情况时,如果影响到通讯,或者可能造成设备损坏,则应当想办法加以改进。
如果由于接地点本身的原因造成了通讯不稳定,比如某个系统的“地”本身存在着很强的干扰,则在此处将屏蔽层接地反而会对PROFIBUS通讯造成影响,因而此时应该考虑首先处理好“地”,然后再将PROFIBUS屏蔽层接地。
为现场设备提供一个良好的“地”以及进行正确的“接地”是提高EMC特性的前提(图32)。
图32 系统进行良好的接地设计和实施
通讯电缆在电柜内布线时,也应该遵循之前的原则,即远离干扰源。
在柜内的走线应当进行精心的设计,尽量避免与高电压、大电流的电缆在同一线槽内走线(图33),同时,不要在柜内形成“环”,特别时避免将变频器等干扰源包围在
图 33 通讯电缆与动力电缆在电柜内的受干扰情况
1) 首先是PROFIBUS插头,除了之前介绍的,需要将屏蔽层压在插头的金属部分外,还需要注意屏蔽层不要剥开的太长,否则会暴露在空间,成为容易受干扰的“天线”(图34)。
图34 屏蔽层暴露在空间容易接收干扰
2) 通讯电缆的屏蔽层在进/出电气柜时,都应该进行屏蔽层接地处理
屏蔽层应该保证与接地铜排进行大面积的接触(图35)。
图35 屏蔽层的接地
通讯电缆在进/出电柜时,都应该将电缆的屏蔽层进行接地处理。这样避免外部的干扰信号进入电柜,同时也避免柜内产生的干扰对外部设备造成影响(图36)。
图36 屏蔽层在柜内进行接地处理
如果通讯电缆在柜内需要经过端子进行连接,则屏蔽层好在端子排的两侧分别进行连接(图37)。
图37 通讯电缆通过端子连接时的屏蔽层处理
而此时应当避免的做法是将屏蔽层剥开,拧成一根连接到端子(图38),这种方式在EMC领域有个名称叫做“猪尾巴”。
图38 屏蔽电缆接头处的“猪尾巴效应”
在现场的连接中,如果将屏蔽层剥开过长,则通讯电缆将有很长一段没有被屏蔽层“保护”,而屏蔽层拧成一根后将形成天线,更容易将干扰引入系统(图39)。
图39 屏蔽电缆的“猪尾巴”连接
如果使用场合存在过压的危险,请在柜外采用直埋电缆,同时在柜内、柜外的电缆上采用过压保护装置(图40)。
如果存在雷击,请参照防雷设计标准进行防雷的设计。
图40 过压保护装置
变频器等比较大功率的设备除了通过干扰电源、通过空间辐射干扰影响设备正常运行外,随着变频器等设备具有PROFIBUS通讯的能力,这些设备产生的干扰也有可能直接进入通讯系统,因而应该对变频器进行EMC的处理。
首先是变频器的安装。在电柜内,尽量用镀锌底板替代喷漆底板做为安装背板(图41),以改善EMC特性。
图41 使用镀锌安装底板代替喷漆底板
变频器的出线,都应该进行相应的EMC处理,比如采用通讯电缆采用屏蔽电缆接地,动力电缆采用屏蔽电缆接地或者采用铁氧体磁环进行滤波处理等(图42)。
图42 对变频器的电缆进行规范的EMC处理
PROFIBUS是一种抗干扰性比较强的现场总线,但不时还会发生一些故障。在处理故障的过程中我们发现,造成PROFIBUS通讯出现故障的原因,80%都是简单的原因,比如:现场没有接地处理、布线时与动力电缆没有分开等等;因此为了避免PROFIBUS网络后期运行时出现故障,首先应该注意按照PROFIBUS的规范进行网络设计,同时严格遵守安装规范的要求进行现场施工。
除此之外,现场诊断一般会使用到BT200和示波器等设备。BT200是西门子的提供的PROFIBUS网络诊断设备,可以进行网络距离检测,网络连接的质量的检查(比如断线、短路等等),常用于项目现场施工布线阶段;
图43 BT200
而示波器常常用于检测PROFIBUS通讯的波形,一般用于项目投产运行后进行网络通讯信号质量的检测。
图43 示波器显示PROFIBUS信号受到干扰时的波形
另外,STEP7等编程工具也可以做为网络诊断的一种工具。在STEP7软件中,提供了“在线诊断”的功能,可以实时的对PROFIBUS网络进行直接的诊断。比如:哪些从站出现故障,可在STEP7的诊断缓冲区中直接得到故障信息,因此一般用于项目调试过程中以及项目运行过程中的网络诊断。
图44 Step7在线诊断功能
另外STEP7还提供了一些PROFIBUS的诊断功能块,比如FB125/FC125等,方便用户通过编程的方式在程序运行中诊断PROFIBUS网络中出现的故障,同时可将故障信息直接显示在上位机画面上。
软件的诊断方式都支持到通道级的诊断。
PROFIBUS总线的应用场合非常多,应用环境也各不相同,但只要严格按照PROFIBUS的规范进行网络拓扑的设计、遵守布线规则、处理好系统的“地”与“接地”等,将在很大程度上避免总线网络使用中出现的各种问题。因此,希望广大的用户在阅读本文的基础上,能够继续参照PROFIBUS的安装和使用手册来正确的应用PROFIBUS现场总线,保证PROFIBUS总线网络和整个自动化项目的正常运行。
PLC执行程序的过程分为哪三个阶段? PLC执行程序的过程分为三个阶段,即输入采样阶段、程序执行阶段、输出刷新阶段,PLC的扫描工作过程: (1)输入采样阶段。在这一阶段中,PLC以扫描方式读入所有输入端子上的输入信号,并将各输入状态存入对应的输入映像寄存器中。此时,输入映像寄存器被刷断。在程序执行阶段和输出刷新阶段中,输入映像存储器与外界隔离,其内容保持不变,直至下一个扫描周期的输入扫描阶段,才被重新读入的输入信号刷新。可见,PLC在执行程序和处理数据时,不直接使用现场当时的输入信号,而使用本次采样时输入到映像区中的数据。一般来说,输入信号的宽度要大于一个扫描周期,否则可能造成信号的丢失。 (2)程序执行阶段。在执行用户程序过程中,PLC按照梯形图程序扫描原则,一般来说,PLC按从左至右、从上到下的步骤逐个执行程序。但遇到程序跳转指令,则根据跳转条件是否满足来决定程序跳转地址。程序执行过程中,当指令中涉及输入、输出状态时,PLC就从输入映像寄存器中“读入”对应输入端子状态,从输出映像寄存器“读入”对应元件(“软继电器”)的当前状态。然后进行相应的运算,运算结果再存入输出映像寄存器中。对输出映像寄存器来说,每一个元件(“软继电器”)的状态会随着程序执行过程而变化。 (3)输出刷新阶段。程序执行阶段的运算结果被存入输出映像区,而不送到输出端口上。在输出刷新阶段,PLC将输出映像区中的输出变量送入输出锁存器,然后由锁存器通过输出模块产生本周期的控制输出。如果内部输出继电器的状态为“1”,则输出继电器触点闭合,经过输出端子驱动外部负载。全部输出设备的状态要保持一个扫描周期。 什么是PLC的响应时间?在输出采用循环刷新和直接刷新方式时,响应时间有何区别? 从PLC收到一个输入信号到PLC向输出端输出一个控制信号所需的时间,就是PLC的响应时间,使用循环刷新时,在一个扫描周期的刷新阶段开始前瞬间收到一个信号,则在本周期内该信号就起作用了,这时响应时间短,等于输入延时时间、一个扫描周期时间、输出延迟时间三者之和;如果在一个扫描周期的I/O更新阶段刚过就收到一个信号,则该信号在本周期内不能起作用,必须等到下一个扫描周期才能起作用,这时响应时间长,它等于输入延迟时间、两个扫描周期时间与输出延迟时间三者之和;在使用直接输出刷新时,长响应时间等于输入延迟时间、一个扫描周期时间、输出延迟时间三者之和。 西门子S7-200系列PLC与PC通信程序流程图及工作过程 在上述通信方式下,由于只用两根线进行数据传送,所以不能够利用硬件握手信号作为检测手段。因而在PC机与PLC通信中发生误码时,将不能通过硬件判断是否发生误码,或者当PC与 PLC工作速率不一样时,就会发生冲突。这些通信错误将导致PLC控制程序不能正常工作,所以必须使用软件进行握手,以保证通信的可靠性。 由于通信是在PC机以及PLC之间协调进行的,所以PC机以及PLC中的通信程序也必须相互协调,即当一方发送数据时另一方必须处于接收数据的状态。如图7-18、图7-19所示分别是PC、PLC的通信程序流程。 图7-18 PC机通信程序流程图 图7-19 S7-PLC通信程序流程图 通信程序的工作过程:PC每发送一个字节前首先发送握手信号,PLC收到握手信号后将其传送回PC,PC只有收到PLC传送回来的握手信号后才开始发送一个字节数据。PLC收到这个字节数据以后也将其回传给PC,PC将原数据与PLC传送回来的数据进行比较,若两者不同,则说明通信中发生了误码,PC机重新发送该字节数据;若两者相同,则说明PLC收到的数据是正确的,PC机发送下一个握手信号,PLC收到这个握手信号后将前一次收到的数据存入的存储区。这个工作过程重复一直持续到所有的数据传送完成。 采用软件握手以后,不管PC与PLC的速度相差多远,发送方永远也不会前于接收方。软件握手的缺点是大大降低了通信速度,因为传送每一个字节,在传送线上都要来回传送两次,并且还要传送握手信号。但是考虑到控制的可靠性以及控制的时间要求,牺牲一点速度是值得的,也是可行的。 PLC方的通信程序只是PLC整个控制程序中的一小部分,可将通信程序编制成PLC的中断程序,当PLC接收到PC发送的数据以后,在中断程序中对接收的数据进行处理。PC方的通信程序可以采用VB、VC等语言,也可直接采用西门子组态软件,如STEP7、WinCC。