西门子PLC模块储存卡6ES7953-8LM31-0AA0
我们在价格上有较大优势,更注重售后服务,现有大量现货销售,欢迎您来电咨询。我公司所有销售中产品均为西门子原装,质保一年
S7-300
模块化微型PLC系统,满足中、小规模的性能要求
各种性能的模块可以非常好地满足和适应自动化控制任务
简单实用的分布式结构和多界面网络能力,应用十分灵活
方便用户和简易的无风扇设计
当控制任务增加时,可自由扩展
大量的集能使它功能非常强劲
PLC控制器的CPU简介 CPU是可编程控制器的控制中枢,相当于人的大脑。CPU一般由控制电路、运算器和寄存器组成。这些电路通常都被封装在一个集成的芯片上。CPU通过地址总线、数据总线、控制总线与存储单元、输入输出接口电路连接。CPU的功能有:它在系统监控程序的控制下工作,通过扫描方式,将外部输入信号的状态写入输入映象寄存区域,PLC进入运行状态后,从存储器逐条读取用户指令,按指令规定的任务进行数据的传送、逻辑运算、算术运算等,然后将结果送到输出映像寄存区域。 CPU常用的微处理器有通用型微处理器、单片机和位片式计算机等。通用型微处理器常见的如Intel公司的8086、80186、到Pentium系列芯片,单片机型的微处理器如Intel公司的MCS-96系列单片机,位片式微处理器如AMD 2900系列的微处理器。小型PLC 的CPU多采用单片机或CPU,中型PLC的CPU大多采用16位微处理器或单片机,大型PLC的CPU多用高速位片式处理器,具有高速处理能力。 编程器是PLC的重要外围设备。利用编程器将用户程序送入PLC的存储器,还可以用编程器检查程序,修改程序,监视PLC的工作状态。 常见的给PLC编程的装置有手持式编程器和计算机编程方式。在可编程序控制器发展的初期,使用编程器来编程。小型可编程序控制器使用价格较便宜、携带方便的手持式编程器,大中型可编程序控制器则使用以小CRT作为显示器的便携式编程器。编程器只能对某一厂家的某些产品编程,使用范围有限。手持式编程器不能直接输入和编辑梯形图,只能输入和编辑指令,但它有体积小,便于携带,可用于现场调试,价格便宜的优点。 计算机的普及,使得越来越多的用户使用基于个人计算机的编程软件。目前有的可编程序控制器厂商或经销商向用户提供编程软件,在个人计算机上添加适当的硬件接口和软件包,即可用个人计算机对PLC编程。利用微机作为编程器,可以直接编制并显示梯形图,程序可以存盘、打印、调试,对于查找故障非常有利。
西门子S7-200PLC的RS485通信口易损坏的原因分析和解决办法
一、 S7-200PLC内部RS485接口电路图:电路图见附件
图中R1、R2是阻值为10欧的普通电阻,其作用是防止RS485信号D+和D-短路时产生过电流烧坏芯片,Z1、Z2是钳制电压为6V,大电流为10A的齐纳二极管,24V电源和5V电源共地未经隔离,当D+或D-线上有共模干扰电压灌入时,由桥式整流电路和Z1、Z2可将共模电压钳制在±6.7V,从而保护RS485芯片SN75176(RS485芯片的允许共模输入电压范围为:-7V~+12V)。该保护电路能承受共模干扰电压功率为60W,保护电路和芯片内部没有防静电措施。

二、常发生的故障现象分析:
当PLC的RS485口经非隔离的PC/PPI电缆与电脑连接、PLC与PLC之间连接或PLC与变频器、触摸屏等通信时时有通信口损坏现象发生,较常见的损坏情况如下:
R1或R2被烧断,Z1、Z1和SN75176完好。这是由于有较大的瞬态干扰电流经R1或R2、桥式整流、Z1或Z1到地,Z1、Z2能承受大10A电流的冲击,而该电流在R1或R2上产生的瞬态功率为:102×10=1000W,当然会将其烧断。
SN75176损坏,R1、R2和Z1、Z2完好。这主要可能是受到静电冲击或瞬态过电压速度快于Z1、Z2的动作速度造成的,静电无处不在,仅人体模式也会产生±15kV的静电。
Z1或Z2、SN75176损坏,R1和R2完好。这可能是受到高电压低电流的瞬态干扰电压将Z1或Z2和SN75176击穿,由于电流较小和发生时间较短因而R1、R2不至于发热烧断。
由以上分析得知PLC接口损坏的主要原因是由于瞬态过电压和静电造成,产生瞬态过电压和静电的原因很多也较复杂,如由于PLC内部24V电源和5V电源共地,24V电源的输出端子L+、M为其它设备混合供电可能导致地电位变化,从而造成共模电压出允许范围。所以EIA-485标准要求将各个RS485接口的信号地用一条低阻值导线连接在一起以保证各节点的地电位相等,消除地线环流!
当带电插拔未隔离的连接电缆时,由于两端电位不相等电路中又存在诸多电感、电容之类的器件,插拔瞬间必然产生瞬态过电压或过电流。
连接在RS485总线上的其它设备产生的瞬态过电压或过电流同样会流入到PLC,总线上连接的设备站点数越多,产生瞬态过电压的因素也越多。
当通信线路较长或有室外架空线时,雷电必然会在线路上造成过电压,其能量往往是巨大的,常有用户沮丧地说:“联网的几十台PLC全部遭打坏了!”。
三、 解决办法:
1、从PLC内部考虑:
采用隔离的DC/DC将24V电源和5V电源隔离,分析了三菱、欧姆龙、施耐德PLC以及西门子的PROFIBUS接口均是如此。
选用带静电保护、过热保护、输入失效保护等保护措施完善的高挡次RS485芯片,如:SN65HVD1176D、MAX3468ESA等,这些芯片价格一般在十几元至几十元,而SN75176的价格仅为1.5元。
采用响应速度更快、承受瞬态功率更大的保护器件TVS或BL浪涌吸收器,如P6KE6.8CA的钳制电压为6.8V,承受瞬态功率为500W,BL器件则可抗击4000A以上大电流冲击

使用通用指令编程的液压滑台系统梯形图举例 梯形图的编程方式是指根据功能表图设计出梯形图的方法。为了适应各厂家的PLC在编程元件、指令功能和表示方法上的差异,下面主要介绍使用通用指令的编程方式、以转换为中心的编程方式、使用STL指令的编程方式和仿STL指令的编程方式。 为了便于分析,我们假设刚开始执行用户程序时,系统已处于初始步(用初始化脉冲M8002将初始步置位),代表其余各步的编程元件均为OFF,为转换的实现做好了准备。 1.使用通用指令的编程方式 编程时用辅助继电器来代表步。某一步为活动步时,对应的辅助继电器为“1”状态,转换实现时,该转换的后续步变为活动步。由于转换条件大都是短信号,即它存在的时间比它激活的后续步为活动步的时间短,因此应使用有记忆(保持)功能的电路来控制代表步的辅助继电器。属于这类的电路有“起保停电路”和具有相同功能的使用SET、RST指令的电路。 如图5-27a所示Mi-1、Mi和Mi+l是功能表图中顺序相连的3步,Xi是步Mi之前的转换条件。 图5-27 使用通用指令的编程方式示意图 编程的关键是找出它的起动条件和停止条件。根据转换实现的基本规则,转换实现的条件是它的前级步为活动步,并且满足相应的转换条件,所以步Mi变为活动步的条件是Mi-1为活动步,并且转换条件Xi=1,在梯形图中则应将Mi-1和Xi的常开触点串联后作为控制Mi的起动电路,如图5-27b所示。当Mi和Xi+1均为“l”状态时,步Mi+1变为活动步,这时步Mi应变为不活动步,因此可以将Mi+1=1作为使Mi变为“0”状态的条件,即将Mi+1的常闭触点与Mi的线圈串联。也可用SET、RST指令来代替“起保停电路”,如图5-27c所示。 这种编程方式仅仅使用与触点和线圈有关的指令,任何一种PLC的指令系统都有这一类指令,所以称为使用通用指令的编程方式,可以适用于任意型号的PLC。 如图5-28所示是根据液压滑台系统的功能表图(见图5-26b)使用通用指令编写的梯形图。开始运行时应将M300置为“1”状态,否则系统无法工作,故将M8002的常开触点作为M300置为“1”条件。M300的前级步为M303,后续步为M301。由于步是根据输出状态的变化来划分的,所以梯形图中输出部分的编程极为简单,可以分为两种情况来处理: 1)某一输出继电器仅在某一步中为“1”状态,如Y1和Y2就属于这种情况,可以将Y1线圈与M303线圈并联,Y2线圈与M302线圈并联。看起来用这些输出继电器来代表该步(如用Y1代替M303),可以节省一些编程元件,但PLC的辅助继电器数量是充足、够用的,且多用编程元件并不增加硬件费用,所以一般情况下全部用辅助继电器来代表各步,具有概念清楚、编程规范、梯形图易于阅读和容易查错的优点。 2)某一输出继电器在几步中都为“1”状态,应将代表各有关步的辅助继电器的常开触点并联后,驱动该输出继电器的线圈。如Y0在快进、工进步均为“1”状态,所以将M301和M302的常开触点并联后控制Y0的线圈。注意,为了避免出现双线圈现象,不能将Y0线圈分别与M301和M302的线圈并联。
R1和R2采用正温度系数的自恢复保险PTC,如JK60-010,正常情况下的电阻值为5欧,并不影响正常通信,当受到浪涌冲击时,大电流流过PTC和保护器件TVS(或BL),PTC的电阻值将骤然增大,使浪涌电流迅速减小。
2、从PLC外部考虑:
使用隔离的PC/PPI电缆,尽量不用廉价的非隔离电缆(特别是在工业现场)。西门子公司早期出产的PC/PPI电缆(6ES7 901-3BF00-0xA0)是不隔离的,现在也改成隔离的电缆了!
PLC的RS485口联网时采用隔离的总线连接器.
与PLC联网的第三方设备,如变频器、触摸屏等的RS485口均使用RS485隔离器BH-485G进行隔离,这样各RS485节点之间就无“电”的联系,也无地线环流产生,即使某个节点损坏也不会连带其它节点损坏。
RS485通信线采用PROFIBUS总线屏蔽电缆,保证屏蔽层接到每台设备的外壳并后接大地。
对于有架空线的系统,总线上好设置专门的防雷击设施。
:850 11 159 0
找到了解决S7-200通讯口损坏的办法了
在我们单位众多的S7-200PLC中,不时有通讯口损坏,致使不能连接PC或不能进行通讯,在对PLC解体时发现,在PLC通讯口出有一芯片--75176,这就是通讯接口芯片,在芯片周围有5个FB,标识FB1~FB5,这其实就是5个保险,在通讯连不上时,一般就是这5个保险中的某个烧毁了,可用同等型号的保险代替,也可用导线直接短路。一般就能解决问题。不过更换时要注意,由于元件时贴片的,十分小,空间也小,所以焊接时注意不要短路。

概述
S7-300
模块化微型 PLC ,中、小规模的性能要求
各种性能的模块可以非常好地和适应自动化控制任务
简单实用的分布式结构和多界面网络能力,应用十分灵活
操作方便,设计简单,不含风扇
任务时可顺利扩展
大量的集能,使它功能非常强劲
S7-300F
故障型自动化,可工厂日益的需求
基于 S7-300
可连接配有型模块的附加 ET 200S 和 ET 200M 分布式 I/O 站
通过采用 PROFIsafe 行规的 PROFIBUS DP 进行相关通信
模块另外也可用于非相关应用
产品目录 ST 70:
也可以在产品目录 ST 70 中查找有关 SIMATIC S7-300 的信息:
应用
S7-300
SIMATIC S7-300 是模块化的微型 PLC ,可中、低端的性能要求。
模块化、无风扇设计、易于实现分布式结构以及方便的操作,使得 SIMATIC S7-300 成为中、低端应用中各种不同任务的经济、用户友好的解决方案。
SIMATIC S7-300 的应用领域包括:
特殊机械,
纺织机械,
包装机械,
一般机械设备制造,
控制器制造,
机床制造,
安装,
电气与电子工业及相关产业。
多种性能等级的 CPU,具有用户友好功能的全系列模块,可允许用户根据不同的应用选取相应模块。任务扩展时,可通过使用附加模块随时对控制器进行升级。
SIMATIC S7-300 是一个通用的控制器:
具有高电磁兼容性和抗震性,可限度地用于工业领域。
S7-300F
SIMATIC S7-300F 故障自动化可使用在对要求较高的设备中。其可对立即停车进行控制,因此不会对人身、造成损害。
S7-300F 下列要求:
要求等级 AK 1 - AK 6 符合 DIN V 19250/DIN V VDE 0801
要求等级 SIL 1 - SIL 3 符合 IEC 61508
类别 1 - 4 符合 EN 954-1
另外,模块还可用在 S7-300F 及故障模块中。因此它可以创建一个全集成的控制,在非相关和相关任务共存的工厂中使用。使用相同的工具对整个工厂进行组态和编程。

设计
S7-300
一般步骤
S7-300自动化采用模块化设计。它拥有丰富的模块,且这些模块均可以地组合使用。
一个包含下列组件:
CPU:
不同的 CPU 可用于不同的性能范围,包括具有集成 I/O 和对应功能的 CPU 以及具有集成 PROFIBUS DP、PROFINET 和点对点接口的 CPU。
用于数字量和模拟量输入/输出的模块 (SM)。
用于连接总线和点对点连接的通信处理器 (CP)。
用于高速计数、定位(开环/闭环)及 PID 控制的功能模块(FM)。
根据要求,也可使用下列模块:
用于将 SIMATIC S7-300 连接到 120/230 V AC 电源的负载电源模块(PS)。
接口模块 (IM),用于多层配置时连接控制器 (CC) 和扩展装置 (EU)。
通过分布式控制器 (CC) 和 3 个扩展装置 (EU),SIMATIC S7-300 可以操作多达 32 个模块。所有模块均在外壳中运行,并且无需风扇。
SIPLUS 模块可用于扩展的条件:
适用于 -25 至 +60℃ 的温度范围及高湿度、结露以及有雾的条件。防直接日晒、雨淋或水溅,在防护等级为 IP20 机柜内使用时,可直接在汽车或室外建筑使用。不需要空气调节的机柜和 IP65 外壳。
设计
简单的结构使得 S7-300 使用灵活且易于:
安装模块:
只需简单地将模块挂在安装导轨上,转动到位然后锁紧螺钉。
集成的背板总线:
背板总线集成到模块里。模块通过总线连接器相连,总线连接器插在外壳的背面。
模块采用机械编码,更换极为容易:
更换模块时,必须拧下模块的固定螺钉。按下闭锁机构,可拔下前连接器。前连接器上的编码装置防止将已接线的连接器错插到其他的模块上。
现场证明可靠的连接:
对于模块,可以使用螺钉型、弹簧型或绝缘刺破型前连接器。
TOP 连接:
为采用螺钉型接线端子或弹簧型接线端子连接的 1 线 - 3 线连接提供预组装接线另外还可直接在模块上接线。
规定的安装深度:
所有的连接和连接器都在模块上的凹槽内,并有前盖保护。因此,所有模块应有明确的安装深度。
无插槽规则:
模块和通信处理器可以不受地以任何连接。可自行组态。
扩展
若用户的自动化任务需要 8 个以上的 SM、FM 或 CP 模块插槽时,则可对 S7-300(除 CPU 312 和 CPU 312C 外)进行扩展:
控制器和3个扩展机架多可连接32个模块:
共可将 3 个扩展装置(EU)连接到控制器(CC)。每个 CC/EU 可以连接八个模块。
通过接口模板连接:
每个 CC / EU 都有自己的接口模块。在控制器上它是在 CPU 旁边的插槽中,并自动处理与扩展装置的通信。
通过 IM 365 扩展:
1 个扩展装置远扩展距离为 1 米;电源电压也通过扩展装置提供。
通过 IM 360/361 扩展:
3 个扩展装置, CC 与 EU 之间以及 EU 与 EU 之间的远距离为 10m。
单独安装:
对于单独的 CC/EU,也能够以更远的距离安装。两个相邻 CC/EU 或 EU/EU 之间的距离:长达 10m。
灵活的安装选项:
CC/EU 既可以水平安装,也可以垂直安装。这样可以限度空间要求。
通信
S7-300 具有不同的通信接口:
连接 AS-Interface、PROFIBUS 和 PROFINET/工业以太网总线的通信处理器。
用于点到点连接的通信处理器
多点接口 (MPI), 集成在 CPU 中;
是一种经济有效的方案,可以同时连接编程器/PC、人机界面和其它的 SIMATIC S7/C7 自动化。
PROFIBUS DP进行通信
SIMATIC S7-300 通过通信处理器或通过配备集成 PROFIBUS DP 接口的 CPU 连接到 PROFIBUS DP 总线。通过带有 PROFIBUS DP 主站/从站接口的 CPU,可构建一个高速的分布式自动化,并且使得操作大大简化。
从用户的角度来看,PROFIBUS DP 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。
以下设备可作为主站连接:
SIMATIC S7-300
(通过带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP)
SIMATIC S7-400
(通过带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP)
SIMATIC C7
(通过带 PROFIBUS DP 接口的 C7 或 PROFIBUS DP CP)
SIMATIC S5-115U/H、S5-135U 和 S5-155U/H,带IM 308
SIMATIC 505
出于性能原因,每条线路上连接的主站不得过 2 个。
以下设备可作为从站连接:
ET 200 分布式 I/O 设备
S7-300,通过 CP 342-5
CPU 313C-2 DP, CPU 314C-2 DP, CPU 314C-2 PN/DP, CPU 315-2 DP, CPU 315-2 PN/DP, CPU 317-2 DP, CPU 317-2 PN/DP and CPU 319-3 PN/DP
C7-633/P DP, C7-633 DP, C7-634/P DP, C7-634 DP, C7-626 DP, C7-635, C7-636
现场设备
虽然带有 STEP 7 的编程器/PC 或 OP 是总线上的主站,但是只使用 MPI 功能,另外通过 PROFIBUS DP 也可部分提供 OP 功能。
通过 PROFINET IO 进行通信
SIMATIC S7-300 通过通信处理器或通过配备集成 PROFINET 接口的 CPU 连接到 PROFINET IO 总线。通过带有 PROFIBUS 接口的 CPU,可构建一个高速的分布式自动化,并且使得操作大大简化。
从用户的角度来看,PROFINET IO 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。
可将下列设备作为 IO 控制器进行连接:
SIMATIC S7-300
(使用配备 PROFINET 接口或 PROFINET CP 的 CPU)
SIMATIC ET 200
(使用配备 PROFINET 接口的 CPU)
SIMATIC S7-400
(使用配备 PROFINET 接口或 PROFINET CP 的 CPU)
可将下列设备作为 IO 设备进行连接:
ET 200 分布式 I/O 设备
ET 200S IM151-8 PN/DP CPU, ET 200pro IM154-8 PN/DP CPU
SIMATIC S7-300
(使用配备 PROFINET 接口或 PROFINET CP 的 CPU)
现场设备
通过 AS-Interface 进行通信
S7-300 所配备的通信处理器 (CP 342-2) 适用于通过 AS-Interface 总线连接现场设备(AS-Interface 从站)。
更多信息,请参见通信处理器。
通过 CP 或集成接口(点对点)进行数据通信
通过 CP 340/CP 341 通信处理器或 CPU 313C-2 PtP 或 CPU 314C-2 PtP 的集成接口,可经济有效地建立点到点连接。有三种物理传输介质支持不同的通信协议:
20 mA (TTY)(仅 CP 340/CP 341)
RS 232C/V.24(仅 CP 340/CP 341)
RS 422/RS 485

自动生产线小车PLC控制梯形图程序设计 设计一小车控制程序,如图所示,要求起动后,小车由A处开始从左向右行驶,到每个位置后,均停车2s,然后自行启动;到达E位置后,小车直接返回A处,再重复上述动作,当每个停车位置均停车3次后,小车自动停于A处。试用步进指令和移位指令两种方法设计。 解:设对应A、B、C、D、E点的检测开关由00000、00001、00002、00003、00004点输入,00005为启动按钮;小车右行为10000,左行为10001。用移位指令和步进指令实现的梯形图分别见图1和图2。 图1 图2