AFB0424HD AFB0424HD AFB0424HD
AD转换的。不画梯形图,直接打程序。
LD X80(AD模块准备好了)
AND X8E(A/D结束标志位)
AND>= D10 K0
BCD D10 K4Y40(CH1的数值转换LED输出)
LD X8F(A/D错误发生标志)
BCD D20 K4Y50(错误代码输出)
ANDP X0
SET Y8F(设定清除的A/D错误要求)
**台达风扇---------代理 销售**
【程先生 qq:937926739】
RST Y8F(解除)
就要按照快电子学处理。此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td>Trd的情况,印刷线路板越大系统的速度就越不能太快。
用以下结论归纳印刷线路板设计的一个规则:
信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。
3、减小信号线间的交叉干扰:
A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时间是Td。在D点,由于A点信号的向前传输,到达B点后的信号反射和AB线的延迟,Td时间以后会感应出一个宽度为Tr的页脉冲信号。在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时间的两倍,即2Td的正脉冲信号。这就是信号间的交叉干扰。干扰信号的强度与C点信号的di/at有关,与线间距离有关。当两信号线不是很长时,AB上看到的实际是两个脉冲的迭加。
CMOS工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电路是迭加100~200mv噪声并不影响其工作。若图中AB线是一模拟信号,这种干扰就变为不能容忍。如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地时,这种信号间的交叉干扰就会变小。原因是,大面积的地减小了信号线的特性阻抗,信号在D端的反射大为减小。特性阻抗与信号线到地间的介质的介电常数的平方成反比,与介质厚度的自然对数成正比。若AB线为一模拟信号,要避免数字电路信号线CD对AB的干扰,AB线下方要有大面积的地,AB线到CD线的距离要大于AB线与地距离的2~3倍。可用局部屏蔽地,在有引结的一面引线左右两侧布以地线。
4、减小来自电源的噪声
电源在向系统提供能源的同时,也将其噪声加到所供电的电源上。电路中微控制器的复位线,中断线,以及其它一些控制线容易受外界噪声的干扰。电网上的强干扰通过电源进入电路,即使电池供电的系统,电池本身也有高频噪声。模拟电路中的模拟信号更经受不住来自电源的干扰。
5、注意印刷线板与元器件的高频特性
在高频情况下,印刷线路板上的引线,过孔,电阻、电容、接插件的分布电感与电容等不可忽略。电容的分布电感不可忽略,电感的分布电容不可忽略。电阻产生对高频信号的反射,引线的分布电容会起作用,当长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过引线向外发射。
印刷线路板的过孔大约引起0.6pf的电容。
一个集成电路本身的封装材料引入2~6pf电容。
一个线路板上的接插件,有520nH的分布电感。一个双列直扦的24引脚集成电路扦座,引入4~18nH的分布电感。
这些小的分布参数对于这行较低频率下的微控制器系统中是可以忽略不计的;而对于高速系统必须予以特别注意。
6、元件布置要合理分区
元件在印刷线路板上排列的位置要充分考虑抗电磁干扰问题,原则是各部件之间的引线要尽量短。在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使相互间的信号耦合为小。
7、处理好接地线

印刷电路板上,电源线和地线重要。克服电磁干扰,主要的手段就是接地。
对于双面板,地线布置特别讲究,通过采用单点接地法,电源和地是从电源的两端接到印刷线路板上来的,电源一个接点,地一个接点。印刷线路板上,要有多个返回地线,这些都会聚到回电源的那个接点上,就是所谓单点接地。所谓模拟地、数字地、大功率器件地开分,是指布线分开,而后都汇集到这个接地点上来。与印刷线路板以外的信号相连时,通常采用屏蔽电缆。对于高频和数字信号,屏蔽电缆两端都接地。低频模拟信号用的屏蔽电缆,一端接地为好。
对噪声和干扰非常敏感的电路或高频噪声特别严重的电路应该用金属罩屏蔽起来。
8、用好去耦电容。
好的高频去耦电容可以去除高到1GHZ的高频成份。陶瓷片电容或多层陶瓷电容的高频特性较好。设计印刷线路板时,每个集成电路的电源,地之间都要加一个去耦电容。去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容为0.1uf的去耦电容有5nH分布电感,它的并行共振频率大约在7MHz左右,也就是说对于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用。
1uf,10uf电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些。在电源进入印刷板的地方和一个1uf或10uf的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容。
每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uf。好不用电解电容,电解电容是两层溥膜卷起来的,这种卷起来的结构在高频时表现为电感,好使用胆电容或聚碳酸酝电容。
去耦电容值的选取并不严格,可按C=1/f计算;即10MHz取0.1uf,对微控制器构成的系统,取0.1~0.01uf之间都可以。
三、降低噪声与电磁干扰的一些经验。
能用低速芯片就不用高速的,高速芯片用在关键地方。
可用串一个电阻的办法,降低控制电路上下沿跳变速率。
尽量为继电器等提供某种形式的阻尼。
使用满足系统要求的低频率时钟。
时钟产生器尽量靠近到用该时钟的器件。石英晶体振荡器外壳要接地。
用地线将时钟区圈起来,时钟线尽量短。
I/O驱动电路尽量靠近印刷板边,让其尽快离开印刷板。对进入印制板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射。
MCD无用端要接高,或接地,或定义成输出端,集成电路上该接电源地的端都要接,不要悬空。
闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。 (10) 印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发射与耦合。
印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远一些。
单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗,经济是能承受的话用多层板以减小电源,地的容生电感。
时钟、总线、片选信号要远离I/O线和接插件。
模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟。
对A/D类器件,数字部分与模拟部分宁可统一下也不要交叉。
时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆。
元件引脚尽量短,去耦电容引脚尽量短。
关键的线要尽量粗,并在两边加上保护地。高速线要短要直。
对噪声敏感的线不要与大电流,高速开关线平行。
石英晶体下面以及对噪声敏感的器件下面不要走线。
弱信号电路,低频电路周围不要形成电流环路。
任何信号都不要形成环路,如不可避免,让环路区尽量小。
每个集成电路一个去耦电容。每个电解电容边上都要加一个小的高频旁路电容。
用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容。使用管状电容时,外壳要接地。
S7-300 PLC的选型原则是据生产工艺所需的功能和容量进行选型,并考虑维护的方便性、备件的通用性,以及是否易于扩展和有无特殊功能等要求。选型时具体注意以下几方面:
(1)有关参数确定。一是输入/输出点数(I/O点数)确定。这是确定PLC规模的一个重要依据,一定要根据实际情况留出适当余量和扩展余地。二是PLC存储容量确定。注意当系统有模拟量信号存在或要进行大量数据处理时,其存储容量应选大一些。
(2)系统软硬件选择。一是扩展方式选择,S7-300 PLC有多种扩展方式,实际选用时,可通过控制系统接口模块扩展机架、Profibus-DP现场总线、通信模块、运程I/O及PLC子站等多种方式来扩展PLC或预留扩展口;二是PLC的联网,包括PLC与计算机联网和PLC之间相互联网两种方式。因S7-300 PLC的工业通信网络淡化了PLC与DCS的界限,联网的解决方案很多,用户可根据企业的要求选用;三是CPU的选择,CPU的选型是合理配置系统资源的关键,选择时必须根据控制系统对CPU的要求(包括系统集能、程序块数量限制、各种位资源、MPI接口能力、是否有
PROFIBUS-DP主从接口、RAM容量、温度范围等),并好在西门子公司的技术支持下进行,以获得合理的选型;四是编程软件的选择,这主要考虑对CPU的支持状况,我们的体会是:STEP7 V4.0对有些型号的CPU不支持,硬件组态时会发生故障出错,而STEP7V5.0则不存在这种问题。
二 设计及使用
1. 设计注意事项
设计时主要应注意以下几方面:
(1)PLC输出电路中没有保护,因此在外部电路中应设置串联熔断器等保护装置,以防止负载短路造成PLC损坏。熔断器容量一般为0.5A。
(2)PLC存在I/O响应延迟问题,因此在快速响应设备中应加以注意。MPI通信协议虽简单易行,但响应速度较慢。
(3)编制控制程序时,好用模块式结构程序。这样既可增强程序的可读性,方便调试和维护工作;又能使数据库结构统一,方便WinCC组态时变量标签的统一编制和设备状态的统一显示。
(4)硬件资源。要合理配置硬件资源,以提高系统可靠性。如PLC电源配电系统要配备冗余的UPS不间断电源,以排除停电对全线运行的不利影响。又如对电机的控制回路要进行继电器隔离,以消除外部负载对I/O模块的可能损坏。另外,系统设备要采用独立的接地系统,以减少杂波干扰。
2. 使用要点
(1)抗干扰措施。来自电源线的杂波,能造成系统电压畸变,导致系统内电气设备的过电压、过负荷、过热甚至烧毁元器件,造成PLC等控制设备误动作。所以,在电源入口处好应设置屏蔽变压器或电源滤波等防干扰设施。其中,电源滤波器的地要以短线路接到中央保护地。对于直流电源,则可加装微分电容加以干扰抑制。
(2)保护接地。可采取用不小于10mm2的保护导线接好配电板的保护地;相邻的控制柜也应良好接触并与地可靠连接。同时要做好防雷保护接地,通常可采取总线电缆使用屏蔽电缆且屏蔽层两端接地,或模拟信号电缆采取两层屏蔽,外层屏蔽两端接地等措施。另外,为防止感应雷进入系统,可采用浪涌吸收器。
(3)做好信号屏蔽。信号的屏蔽非常关键,一般可采取屏蔽电缆传送模拟信号。注意对多个模拟信号共用一根多芯屏蔽电缆或用两种屏蔽电缆传送时,信号间一定要做好屏蔽。而且电缆的屏蔽层一端(一般在控制柜端)要可靠接地。
(4)当现场没有或无法设置硬点时,可在操作界面上采取软按键的方法解决走向选择或控制方式选择等问题。此外,与变频器、智能仪表等的连接,好还是采用信号线直接相连的方式。
(5)应合理配置PLC的使用环境,提高系统抗干扰能力。具体采取的措施有:远离高压柜、高频设备、动力屏以及高压线或大电流动力装置;通信电缆和模拟信号电缆尽量不与其他屏(盘)或设备共用电缆沟;PLC柜内不用荧光灯等。另外,PLC虽适合工业现场,但使用中也应尽量避免直接震动和冲击、阳光直射、油雾、雨淋等;不要在有腐蚀性气体、灰尘过多、发热体附近应用;避免导电性杂物进入控制器。
三 调试要点及注意事项
(1)常规检查。在通电之前要耐心细致地作一系列的常规检查(包括接线检查、绝缘检查、接地电阻检查、保险检查等),避免损坏PLC模块(用STEP7的诊断程序对所有模块进行检查)。
(2)系统调试。系统调试可按离线调试与在线调试两阶段进行。其中离线调试主要是对程序的编制工作进行检查和调试,采用STEP7能对用户编制程序进行自动诊断处理,用户也可通过各种逻辑关系判断编制程序的正误。而在线调试是一个综合调试过程,包括程序本身、外围线路、外围设备以及所控设备等的调试。在线调试过程中,系统在监控状态下运行,可随时发现问题、随时解决问题,从而使系统逐步完善。因此,一般系统所存在的问题基本上可在此过程中得到解决。
在线调试设备开停时,必须先调试空开关的运行情况;如果设备设有运行监视开关,则可把监视开关强制为"1"(正式运行时,撤销强制)。调试单台设备时可针对性地建立该设备的变量表,对该设备及其与该设备相关的变量进行实时监视。这样既可判断逻辑操作是否正确,对模拟量的变化也可一目了然。比如调试电动执行器时,可建立一变量表,对执行器的位置信号、限位信号、过力矩信号及输出命令信号等进行实时监视,便可非常直观地观测执行器的动作情况。
(3)S7-300 PLC模拟量模块可通过变换信号类型卡支持各种类型信号。当改造老生产工艺线时,不可避免地会遇到多类信号。因此,设计时好不把几种信号接到同一模块;同时必须先组态好模块,再接信号线,检查无误后送电。此外,应避免两线制与四线制信号、电流与电压信号的混接,以免烧坏模块。
(4)一般变送器的负载能力为600Ω,而模拟量输入模块的抗阻各不相同(一般在250Ω以下)。如果回路内设安全栏,必须注意抗阻的匹配;模拟量输出模块的负载能力为600Ω,一般
执行器的负载能力为250Ω;如线路较长,也存在抗阻匹配问题。此外,要加强信号的隔离,特别是要加强与支流调速装置、变频调速装置及设备配套的小型PLC之间的信号隔离,防止相互干扰。
四 结束语
S7-300 PLC的应用非常广泛,在设计选型和调试及实际应用中可能会碰到各种各样的问题。本文从实际出发,结多年实践经验,对以上各方面的问题提出了自己的见解,希望对工程技术人员能有一定的参考价值。
本例包含了有关SIMATIC S7-200的模拟电位器(POT)的使用信息。电位器的位置转换为0至255之间的数字值,然后存入两个特殊存储器字节SMB28和SMB29中,分别对应电位器0和电位器1的值需要一把小螺丝刀用以调整电位器的位置本例介绍了使用模拟电位器调整定时器设定值的三种方案:
---- 方案1说明了用模拟电位器对定时器设定值进行细调的方法。首先通过程序中的偏移量(本例中为200ms)对定时器进行粗调,然后再用电位器能把定时器的设定值地调到满意的设置。每个定时器周期之后,执行子程序1中的指令,把POT0的值(在SMB28中)读到AC1,除以2,再加上200ms的偏移量。返回主程序时,AC2中的定时器循环计数值加1,并拷贝到输出字节(QB0),以供显示。
---- 在方案2中,对电位器1的100次扫描值在AC3中累加后并取平均,再存入VW12.如果该值低于低保护限值VW14或高于高保护限值VW16(两者均在首次扫描时初始化)则将新值VW12拷贝到VW14、VW16和VW18中。然后再分别对VW16和VW14的值减、 加3ms,作为新限值,而VW18中的平均值被传回主程序作为对定时器T34的设定值。返回主程序时,VW20中的定时器循环计数值加1,并拷贝到输出字节(QB1),以供显示。
---- 在方案3中,把电位器0(PTO )的值直接作为定时器T35的设定值?AC2中的定时器循环计数值加1,并拷贝到输出字节(QB0),以供显示。