只有正确合理的设置变频器的参数,才能充分发挥它的性能,使变频调速系统的各项控制指标达到令人满意的水平
一般来说,当遇到西门子变频器故障时,再上电之前首先要用万用表检查一下整流桥和IGBT模块有没有烧,线路板上有没有明显烧损的痕迹。
具体方法是:用万用表(*好是用模拟表)的电阻1K档,黑表棒接变频器的直流端(-)极,用红表棒分别测量变频器的三相输入端和三相输出端的电阻,其阻值应该在5K-10K之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。然后,反过来将红表棒接变频器的直流端()极,黑表棒分别测量变频器三相输入端和三相输出端的电阻,其阻值应该在5K-10K之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。否则,说明模块损坏。这时候不能盲目上电,特别是整流桥损坏或线路板上有明显的烧损痕迹的情况下尤其禁止上电,以免造成更大的损失。
如果以上测量西门子变频器故障结果表明模块基本没问题,可以上电观察。
1、上电后面板显示[F231]或[F002](MM3变频器),这种故障一般有两种可能。常见的是由于电源驱动板有问题,也有少部分是因为主控板造成的,可以先换一块主控板试一试,否则问题肯定在电源驱动板部分了。
2、上电后面板无显示(MM4变频器),面板下的指示灯[绿灯不亮,黄灯快闪],这种现象说明整流和开关电源工作基本正常,问题出在开关电源的某一路不正常(整流二极管击穿或开路,可以用万用表测量开关电源的几路整流二极管,很容易发现问题。换一个相应的整流二极管问题就解决了。这种问题一般是二极管的耐压偏低,电源脉动冲击造成的。
3、有时显示[F0022,F0001,A0501]不定(MM4),敲击机壳或动一动面板和主板时而能正常,一般属于接插件的问题,检查一下各部位接插件。也发现有个别机器是因为线路板上的阻容元件质量问题或焊接不良所致。
4、上电后显示[-----](MM4),一般是主控板问题。多数情况下换一块主控板问题就解决了,一般是因为外围控制线路有强电干扰造成主控板某些元件(如帖片电容、电阻等)损坏所至,或与主控板散热不好也有一定的关系。但也有个别问题出在电源板上。
5、上电后显示正常,一运行即显示过流。[F0001](MM4)[F002](MM3)即使空载也一样,一般这种现象说明IGBT模块损坏或驱动板有问题,需更换IGBT模块并仔细检查驱动部分后才能再次上电,不然可能因为驱动板的问题造成IGBT模块再次损坏!这种问题的出现,一般是因为变频器多次过载或电源电压波动较大(特别是偏低)使得变频器脉动电流过大主控板CPU来不及反映并采取保护措施所造成的。
综上,大的原器件如IGBT功率模块出问题的比例倒是不多,因为一些低端的简单原器件问题和装配问题引发的故障比例较多,如果有图纸和零件,这些问题便不难解决而且费用不高,否则解决这些问题还是不容易的,*简单的办法就是换整块的线路板。
西门子变频器F0003是欠电压故障,造成这种故障的原因主要有以下几种:
1、供电电源的电压是否不稳定,存在较大波动、短时掉电或者瞬时的电压降低;
2、供电电源的容量是否不够,与变频器功率相比,容量显得比较紧张(这个可能性一般比较大)。具体表现在高速重载时易出现故障,轻载时不易出;
3、减缓变频器的动态响应,增大斜坡上升时间参数 P1120的值;
4、使能动态缓冲功能,设置参数 P1240=2;
5、检查MM440变频器的整流环节,看看整流单元是否工作正常。整流单元不能正常工作的话,报这个故障是很普遍的;
6、检查直流母线的电容,看电容是否存在老化等异常现象。如果直流母线电容有问题的话,就会导致母线电压不稳,无法保持一个相对恒定的正常电压值,故报 F0003 欠压故障。
如果以上没问题,则可能是变频器本身电压检测回路有问题。
西门子变频器SINAMICS V90支持内部设定值位置控制,外部脉冲位置控制,速度控制,扭矩控制;并且集合了脉冲输入,模拟量输入,模拟量输出,数字量输入,数字量输出和编码器脉冲输出的各类接口。为实现用户的控制需求实现方便快速的连接方式,可以更好的与西门子PLC进行集成,组成一套完整的控制系统。夏罗登工业科技下面对这款变频器的快速调试方式做一个介绍,为用户在使用时提供参考。
西门子变频器SINAMICS V90使用方便,可以实现简单的优化和快速的调试,主要体现在以下几点:
1. 简单优化
西门子变频器SINAMICS V90,具有自动化优化功能和机械共振抑制功能,使得系统可以很好的自动使用机械。可以实现即插即用,而不需要深入的伺服技术要求;
2. 调试方便
西门子变频器SINAMICS V90使用SINAMICS V-ASSISTANT,使得调试过程简单方便。软件通过图形化的指导用户设定参数,直观的界面监控驱动和电机状态和仪表式的信号记录和机械分析功能;
3. 通讯便捷
西门子变频器SINAMICS V90具有标准的接口,使得驱动和西门子PLC或运动控制器的连接简单方便。它的标准接口包括RS485接口,支持Modbus RTU和USS通讯;
4. 配置简单
西门子变频器SINAMICS V90可以的搭配驱动和电机产品组合,方便用户选型,并且具有应用程序示例,用户可以通过V90驱动系统的典型应用轻松实现各种功能。
西门子变频器SINAMICS V90具有经济性好,伺服性能高,操作简单,运行稳定的特点。并且和SIMOTICS S-1FL6 伺服电机配套使用,可以组成理想的伺服控制系统,应用在印刷机,包装机等设备上。用户在选择使用时,可以参考本文介绍的快速调试特点,合理配置使用。
维修西门子变频器和维修国产变频器方法都差不多,大致分三个步骤:一,静态测试,就是断电以后拿工具仪器来测量。二,动态测试,即通电试机。三,判断故障部位,只要找准了故障部位和故障元件,更换了变频器维修就修好了。这里的三个维修步骤根据实际维修变频器时的情况,并没有先后顺序。为了让大家更直观了解检测西门子变频器常见故障方法,下面夏罗登工业科技来做具体的分析讲解。
一、动态测试
接到一台故障变频器后,首先应当向客户了解所维修的变频器损坏的情况,前因后果,如果没有爆炸等严重现象的话,才可以通电试机,在上电前后必须注意以下几点:
1、如未显示故障,首先检查参数是否有异常,并将参数复归后,在空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则变频器模块或驱动板等有故障。
2、在输出电压正常(无缺相、三相平衡)的情况下,负载测试,尽量是满负载测试。
3、上电之前,须确认变频器输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。当然只有2.2KW以下变频器才常见 有220伏电压 的。
4、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能会导致变频器出现故障,严重时会出炸机等情况。
5、上电后检测故障显示内容,并初步断定故障及原因。
二、静态测试
1、测试逆变电路、变频器驱动电路。
将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒N端,重复以上步骤应得到相同结果,否则可确定逆变模块有故障。这种方法能判断约90%以上的模块损坏,当然要记住不是百分之百哦。
2、测试整流电路、开关电源电路。
找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,正常时有几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。这样可以检查出整流电路是不是好的,如果是好的可以通电测量更多变频器电路。
将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,说明整流桥有故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或启动电阻出现故障。
三、 故障判断
通过上述一系列静态测试和动态试机后,必然能判断出相应的故障部分,如果判断不了,那想要维修好变频器可能就有点恼火了。其他一些入门级故障判断如下:
1、显示过电流或接地短路
通常是由于电流检测电路损坏。如霍尔元件、比较器检测电路等。
2、电源与驱动板启动显示过电流
通常是由于驱动电路或逆变模块损坏引起。
3、逆变模块损坏
通常是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,须注意检查马达及连接电缆。在确定无任何故障下,才能运行变频器。
4、上电无显示
通常是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,操作面板损坏同样会产生这种状况。
5、显示过电压或欠电压
通常由于输入缺相,电路老化及电路板受潮引起。解决方法是找出其电压检测电路及检测点,更换损坏的器件。
6、空载输出电压正常,带载后显示过载或过电流
通常是由于参数设置不当或驱动电路老化,变频器IGBT模块损坏引起。
7、变频器整流模块损坏
通常是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染的设备等。
这些方法公公是入门级简要描述,如果想要看了这些文章就会维修变频器,特别是维修西门子变频器,那首先这个想法就是错的。任何人都不要指望从别人的维修日记里找到现成的方法来解决实际维修难题。
通常我们把变频器称为变频驱动器或驱动控制器,是应用变频驱动技术改变交流电动机工作电压的频率和幅度,来平滑控制交流电动机速度及转矩,*常见的是输入及输出都是交流电的交流/交流转换器。您知道变频器的工作原理以及作用么?下面夏罗登工业科技就来介绍一下变频器的工作原理以及变频器的作用,以便大家对于变频器有更好的认识和应用。
一、变频器工作原理:
主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。整流器*近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。平波回路 在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。逆变器同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。
控制路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。
(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
(2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。
(3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。
(4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
(5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。
二、变频器的作用:
变频器的直接作用:
通过改变电动机的电压和频率,使电机的速度可以无极调节。软启动节能,功率因数补偿节能
变频器的间接作用:
节能(节电)。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。降低电耗。
1 变频器的控制方式
它是由负载的力矩特性所决定的,电动机的机械负载转矩特性由下式决定:P=Tn/9550 式中:P:电动机功率KW. T:电动机转矩N*M. n:电动机的转速rpm。转矩T与转速n的关系可分为3种:①恒转矩:转速变化时转矩恒定的负载。如传送带,起重机等;②恒功率:转速和转矩成反比关系,但是二者之积恒定不变。如机床主轴;③变转矩:转矩随着转速的变化按照一定的函数关系变化的负载。如风机,泵类等。当参数变频器控制方式P1300=0时变频器工作在线性U/F方式,此方式能够适应大多数恒转矩负载。如果负载是风机,泵类则P1300=1。在变频调速的时候系统可能会发生共振现象,从而造成系统工作异常甚至机械损坏,为此变频器提供了可跳转频率的功能,P1091~P1094用于设置跳转频率点P1101用于设置跳频带宽,从而避免共振。当P1300=3时变频器的工作在可编程的U/F控制方式P1320.P1322.P1324提供了可编程频率坐标,P1321.P1323.P1325提供了可编程的电压坐标,该方式能在某一特定频率下为电动机提供特定的转矩以适应负载的变化。矢量控制是仿照直流电动机的控制思想对异步电动机进行控制,首先将定子三相电流通过坐标换算成励磁电流分量和电枢电流分量并且分别对这2个量进行控制。因此电动机的机械特性是非常硬的而且具有很高的动态响应能力。根据需要可以将P1300=20/21无/有反馈矢量控制或P1300=22/23无/有反馈的矢量转矩控制以满足负载的控制精度。
2 加/减速时间
加速时间定义为输出频率从0上升到*大频率所需要的时间,减速时间定义为输出频率从*大下降到0所需要的时间。加/减速时间设置的合理与否对电动机的起动,停止,以及调速系统对速度变化的响应都有很大的影响。加速时间的设置应该把电动机的定子电流限制在变频器的额定电流以内而不使过流保护装置动作。电动机在减速过程中处于再生发电制动状态,其回馈的能量通过逆变器上的续流二极管反送到直流母线的电解电容器上,从而使其起两端的电压升高。因此减速时间的设置是以直流母线的电压不过过电压报警值即可。加速时间的计算公式:ta=(Jm+Jl)*n/(9.56*(Tma-Tl))减速时间的计算公式:tb=(Jm+Jl)*n/(9.56*(Tmb-Tl))式中:Jm:电动机惯量Jl:负载惯量. n: 电动机转速Tma:电动机的驱动转矩Tmb:电动机的制动转矩Tl:负载转矩.利用公式加/减速时间就可以计算出来,但是也可以用经验法来进行计算:首先,使拖动系统全速运行(工作频率为50 Hz),然后切断电源使拖动系统处于自由制动状态,用秒表测量出其转速下降到0rpm所需要的时间,即可以知道其转动惯量的大小。通常时间常数可选择为按自由制动时间的1/5~1/3。*后重复上述过程,观察变频器有无过流或过压报警,调整加/减速时间的设定值,以无报警为原则确定*佳时间常数
3 转动惯量的设置
电动机与所带负载的转动惯量的设置往往被忽视,认为只要加/减速时间设置正确就可以保证系统正常工作,其实如果其设置不当会导致系统震荡或者变频器报警等等。转动惯量公式:J=T/(dω/dt)式中T:电动机转矩.ω:电动机角速度.t:时间。电动机与负载转动惯量的获得方法:首先让变频器工作在适当的频率,如:5 Hz~10 Hz,分别让电动机空载和带负载运行,读出参数r0333电动机额定转矩和r0345电动机的起动时间,然后设置参数P0341电动机的转动惯量和P0342驱动装置惯量与电动机惯量之比。这样变频调速系统才能达到令人满意的效果。
4 快速调试
在使用变频器驱动电动机之前必须进行快速调试。参数P0010=1(开始进行快速调试);在调试过程当中一定要向变频器正确输入电动机的铭牌参数。当变频器的额定功率大于其所驱动的电动机的额定功率时应该合理设置参数P0640(电动机的过载因子)以防止电动机因过载而损坏。在有/无传感器反馈的的矢量控制方式下电动机的数据自动检测(P1910)必须处在冷态(常温)下进行。如果电动机运行的环境温度与缺省值(20℃)相差很多时还必须设置P0625(电动机运行的环境温度)为实际温度值。P3900=3(结束快速调试,进行电动机计算单不进行I/O复位)则接通电动机进行参数自动检测,当检测完成后报警A0541自动消失,变频器进入“运行准备就绪”状态。
5 动态缓冲功能
本功能用于定义在电压下降或者瞬时欠电压时变频器自动进行欠压补偿。适当降低频率以发电机模式来运行电动机,通过负载能量回馈并与此能量供给变频器来维持不跳闸运行。首先使参数P2800=1使能动态缓冲功能然后根据公式P1245[V]=P1245[%]* 1.414*P0210(电源电压)设定动态缓冲接通电平P1245的值,如果设置过大将会干扰传动装置的正常运行。*后根据P1256选择的对应措施确定动态缓冲的保持速度折算为变频器的输出频率P1257。直流电压控制器的配置P1240=2[*大直流电压控制器(动态缓冲使能)]。
6 负载制动
当生产机械要求迅速减速或停车时就会产生电动机再生发电制动能量的消耗的问题,负载的动能由电动机转换成电后能通过逆变器上的续流二极管反送回直流母线。由于直流电能无法通过交-直不可控整流电路回送给交流电网而仅靠直流母线上的电解电容器来吸收,所以在电解电容器上形成“泵升电压”使直流母线的电压升高,而且过高的直流电压将导致变频器产生过电压报警。因此MM440变频器提供了电阻能耗制动功能,利用其内部的制动单元和外部的制动电阻将制动时产生的回馈电能以热能的形式消耗掉从而保证变频调速系统的可靠制动。我国的电网电压波动较大,故此不能因为电网电压的升高导致使制动单元误动作,制动限值电压所以应该足够高。但是应该尽量使变频器工作在额定电压附近,这样有利于其安全运行所以参数P2172(直流电路的门限电压)必须根据现场的实际情况进行合理设置,然后P1240=1(直流电压控制器的配置:*大直流电压控制器使能动力制动)。停止周期P1237根据负载情况可以选择数值1~5(工作停止周期:5%,10%,20%,50%,*)。制动电阻阻值和容量的选择应该不小于选型手册中给出的数值,否则将会导致变频器和制动电阻的损坏。
7 转矩提升
本功能又叫转矩补偿,它是补偿因电动机定子绕组的电阻而引起的在低速时电动机的转矩下降,而把低频率范围的U/F增大的方法。参数P1310连续提升,P1311加速提升,P1312起动提升应该根据负载的机械特性通过试验而确定合适的数值,当P1310,P1311,P1312一起使用时提升值是各个提升值共同作用的结果,但是这些参数的优先级别为:P1310>P1311>P1312。P1316(提升结束点的频率):提升结束频率相对于电动机额定频率的百分比。在参数设置的时候一定要遵循从小到大的原则,否则在负载比较轻的情况下被过分提升了的U/F将使电动机的磁路处于过饱和的状态,此时励磁电流的波形将畸变为峰值很大的尖顶波而引起变频器的过电流跳闸。