公司网址:http://www.shzx-auto.com/
zexuly190726
zexuly190726
机械液压型调速器也称机械调速器(或机调);电气液压型又可分为模拟电气液压型和数字电气液压型,模拟电气液压型调速器也称电气调速器(或电调),数字电气液压型也称为微机调速器(或微机调)。机械调速器的测量元件、反馈元件、比较元件均是机械的;电气调速器的测量元件、反馈元件、比较元件均是模拟电气的;微机调速器的测量元件、反馈元件、比较元件均是数字的。(2)按系统结构的不同,调速器可分为辅助接力器型、中间接力器型和调节器型三种类型。辅助接力器型调速器系统其框图中有跨越反馈。即第二级液压放大输出信号反馈到比较元件,形成调速器的控制调节规律,这种系统结构的*级液压放大的接力器称为辅助接力器,大多是机械型和模拟电气型调速器;中间接力器型调速器系统采用逐级反馈形式。
*级液压放大输出信号反馈到比较元件,形成调速器的控制调节规律。第二级液压放大输出信号反馈到自身的输入端,构成机械液压随动放大系统。这种系统结构的*级液压放大的接力器就称为中间接力器,多用于模拟电气液压型调速器中;调节器型调速器系统结构与前两种结构不同,形成调速器的控制调节规律部分不包含有液压放大,全部由模拟电子电路或微机软硬件实现,功率放大也完全由电气液压随动系统承担,这种结构也称为“调节器+电液随动系统”。模拟电子电路实现的调节器叫“电子调节器”,微机软硬件实现的调节器叫“微机调节器”,微机调速器基本上都采用这种结构形式。(3)按控制策略的不同,调速器可分为PI(比例+积分)调节型、PID(比例+积分+微分)调节型及智能控制型PI调节规律是通过软反馈并联校正实现的;PID调节型还可分为串联PID调节型和并联PID调节型;智能控制调速器是利用微机技术并结合现代*的控制策略完成的。
大都以常规PID调节为基础发展而来,包括有自适应变结构PID、模糊白适应PID以及人工网络PID等。(4)按执行机构数目的不同,调速器可分为单调节调速器和双调节调速器。双调节调速器的协联装置有机械协联(凸轮)、机电协联(凸轮+位移传感器)、电气协联(电子电路实现的协联函数发生器)及数字协联(微机程序)等几种类型。调节器型双调节调速器有两种协联方式,串行协联和并行协联。(5)按工作容量的不同,调速器可分为大型、中型、小型和特小型。大型调速器用主配压阀直径表示工作容量,主配压阀直径为80mm、100mm、150ram、200mm、250mm,其余调速器用调速功来表示工作容量,中型调速器的调速功为18000Nm、30000Nm。
在使用期满时应及时更换。印刷电路板包含静电敏感元件,在触摸一块印刷电路板之前,执行工作人员必须自己进行静电放电,做到这一点*简单的方法是触摸一下一个导电接地导体,例如插座的接地线。晶闸管模块是通过自攻螺丝安装的,当一个模块更换时,散热器支撑表面必须清扫并且在晶闸管模块上涂上一层新的导热膏。使用和原来长度相同的公制螺钉和固定件去固定模块。什么是电子调速器?它是一种可以控制发电机转速的装置,同时电子调速器还是能够按照接受到的电信号,来利用控制器与执行器两个机构对喷油泵的供油量大小实现改变。并且也可以根据柴油机的负荷变动,从而自动执行增减动作让机器的转速得以稳定。说的再直白一些的话,电子调速器是一种可控硅调压电路的电子控制系统。
通过改变可控硅导通角的大小,起到控制输出电压高低的作用。凡是转速感测元件或者是执行机构均采用了电气方式的调速器,从传统的叫法上来讲统称为电子调速器,被广泛的应用于机械、印刷、包装、等行业生产流水线上作为调速之用。模拟式电子调速器:它的控制器通常都是采用了模拟电子元件组装而成;数字式电子调速器:其控制器是通过数字式微处理器以及相应的外围芯片等组装而成;全电子调速器:信号感测和执行机构都是选用了电气的方式,并且这种设备的工作能力较小,一般用在小型柴油机上比较多。电-液或者是电-气调速器:像这类电子调速器的信号监测是采用了电子式,但是执行机构则是采用了液压或者是气力等方式。在液压或者是气压伺服器工作中的能力较强。
因此也满足了各式各样的柴油机使用要求。液-电双脉冲调速器:就是在普通的液压调速器上额外的装上电子式的负载信号感测装置,单脉冲调节是一种纯粹的可调频类型,在设备上仅仅选用了测速传感器,以转速的变化信号起到调节燃油量的作用,双脉冲调节则是可调载也能调频,主要适用于对供电要求相对比较高的柴油发电机组中。具备动作灵敏、反应速度快、同时所用时间只需液压调速器的1/10至1/2之间的范围;无论是动态的还是静态精度相对较高;能有利于实现遥控和自动控制;无调速器驱动机构,在安装方面也比较的简单。设备可以利用电位器来调整设定所需的转速,然后传感器能够经过飞轮上的齿圈来测量出发动机实际转速值,并传送到控制器中同时再由控制器将两组数据做出对比。
通过比较后的差值会经控制线路整理和放大,*驱动执行器的输出轴利用调节连杆拉动喷油泵的齿杆,从而实现对供油量的调节达到保持该设定转速的目的。首先电子调速器所针对的调速通常是单相电机进行的,通过改变其接入绕组的电阻以及电容才起到调节电机转速的作用。但是速度的快慢对于电源供电功率的输出来讲是不会产生任何的变化的,因此这种调速确切的来讲并不是属于一种节能型的调速方式。其次变频调速器是把原来直接输入三相异步电动机的电源先将它和自身进行连接,同时在设备的内部利用PWM等电子变流技术让工频交流电得到整流、逆变,*成为了一种频率可以受控的交流电再输入到电机当中去,等于是说电流经过了一次处理。当这个时候在通过V/F控制、输出转矩控制以及矢量控制等方式对频率进行调节。
进而改变回路电流实现节能运行的效果,特别是在电机轻载的时候该调速器的节能会尤其的显著。变频调速器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。变频调速器(frequencychanger/frequencyconverter)是一种用来改变交流电频率的电气设备。此外,它还具有改变交流电电压的辅助功能。过去,变频调速器一般被包含在电动发电机、旋转转换器等电气设备中。随着半导体电子设备的出现,人们已经可以生产完全独立的变频调速器。
对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的,器件的更新促进了电力电子变换技术的不断发展。20世纪70年始。
由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出*转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果*。20世纪80年代后半期开始,美、日、德、英等发达*的VVVF变频器已投入市场并获得了广泛应用。按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能变频器、高频变频器、单相变频器和三相变频器等。