德国费斯托FESTO位置传感器用来测量机器人自身位置的传感器。位置传感器可分为两种,直线位移传感器和角位移传感器。德国费斯托FESTO位置传感器可用来检测位置,反映某种状态的开关,和位移传感器不同,位置传感器有接触式和接近式两种。
德国费斯托FESTO位置传感器的触头由两个物体接触挤压而动作,常见的有行程开关、二维矩阵式位置传感器等。行程开关结构简单、动作可靠、价格低廉。当某个物体在运动过程中,碰到行程开关时,其内部触头会动作,从而完成控制,如在加工中心的X、Y、Z轴方向两端分别装有行程开关,则可以控制移动范围。二维矩阵式位置传感器安装于机械手掌内侧,用于检测自身与某个物体的接触位置。
接近开关是指当物体与其接近到设定距离时就可以发出“动作”信号的开关,它无需和物体直接接触。接近开关有很多种类,主要有电磁式、光电式、差动变压器式、电涡流式、电容式、干簧管、霍尔式等。接近开关在数控机床上的应用主要是刀架选刀控制、工作台行程控制、油缸及汽缸活塞行程控制等。
德国费斯托FESTO位置传感器霍尔传感器
霍尔传感器是利用霍尔现象制成的传感器。将锗等半导体置于磁场中,在一个方向通以电流时,则在垂直的方向上会出现电位差,这就是霍尔现象。将小磁体固定在运动部件上,当部件靠近霍尔元件时,便产生霍尔现象,从而判断物体是否到位。
德国费斯托FESTO位置传感器直流无刷电机
位置传感器是组成无刷直流电动机系统的三大部分,也是区别于有刷直流电动机的主要标志。其作用是检测主转子在运动过程中的位置,将转子磁钢磁极的位置信号转换成电信号,为逻辑开关电路提供正确的换相信息,以控制它们的导通与截止,使电动机电枢绕组中的电流随着转子位置的变化按次序换向,形成气隙中步进式的旋转磁场,驱动永磁转子连续不断地旋转。
直流无刷电机需要位置传感器来测量转子的位置,电机控制器通过接受位置传感器信号来让逆变器换相与转子同步来驱动电机持续运转。尽管直流无刷电机也可以通过定子绕组产生的反感生电动势来检测转子的位置,而省去位置传感器,但是电机启动时,转速太小,反感生电动势信号太小而无法检测。
可以用作直流无刷电机位置传感器的霍尔传感器芯片分为开关型和锁定型两种。对于电动自行车电机,这两种霍尔传感器芯片都可以用来测量转子磁钢的位置。用这两种霍尔传感器芯片制作的直流无刷电机的性能,包括电机的输出功率、效率和转矩等没有任何差别,并可以兼容相同的电机控制器。
位置传感器的应用,降低电机运行的噪音、提高电机的寿命与性能,同时达到降低耗能的效果。位置传感器的应用无疑给电机市场的发展提供了强大的推动力。
德国费斯托FESTO位置传感器曲轴与凸轮轴
曲轴位置传感器(Crankshaft Position Sensor,CPS)又称为发动机转速与曲轴转角传感器,其功用是采集曲轴转动角度和发动机转速信号,并输入电子控制单元(ECu),以便确定点火时刻和喷油时刻。
凸轮轴位置传感器(Camshaft Position Sensor,CPS)又称为气缸识别传感器(Cylinder Identification Sensor,CIS),为了区别于曲轴位置传感器(CPS),凸轮轴位置传感器一般都用CIS表示。凸轮轴位置传感器的功用是采集配气凸轮轴的位置信号,并输入ECU,以便ECU识别气缸1压缩上止点,从而进行顺序喷油控制、点火时刻控制和爆燃控制。此外,凸轮轴位置信号还用于发动机起动时识别出次点火时刻。因为凸轮轴位置传感器能够识别哪一个气缸活塞即将到达上止点,所以称为气缸识别传感器。
光电式曲轴与凸轮轴位置传感器
(1)结构特点
日产公司生产的光电式曲轴与凸轮轴位置传感器是由分电器改进而成的,主要由信号盘(即信号转子)、信号发生器、配电器、传感器壳体和线束插头等组成。
信号盘是传感器的信号转子,压装在传感器轴上,如图2-22所示。在靠近信号盘的边缘位置制作有均匀间隔弧度的内、外两圈透光孔。其中,外圈制作有360个透光孔(缝隙),间隔弧度为1。(透光孔占0.5。,遮光孔占0.5。),用于产生曲轴转角与转速信号;内圈制作有6个透光孔(长方形孑L),间隔弧度为60。,用于产生各个气缸的上止点信号,其中有一个长方形的宽边稍长,用于产生气缸1的上止点信号。
信号发生器固定在传感器壳体上,它由Ne信号(转速与转角信号)发生器、G信号(上止点信号)发生器以及信号处理电路组成。Ne信号与G信号发生器均由一个发光二极管(LED)和一个光敏晶体管(或光敏二极管)组成,两个LED分别正对着两个光敏晶体管。
(2)工作原理
光电式传感器的工作原理如图2-22所示。信号盘安装在发光二极管(LED)与光敏晶体管(或光敏二极管)之间。当信号盘上的透光孔旋转到LED与光敏晶体管之间时,LED发出的光线就会照射到光敏晶体管上,此时光敏晶体管导通,其集电极输出低电平(0.1~O.3V);当信号盘上的遮光部分旋转到LED与光敏晶体管之间时,LED发出的光线就不能照射到光敏晶体管上,此时光敏晶体管截止,其集电极输出高电平(4.8~5.2V)。
如果信号盘连续旋转,透光孔和遮光部分就会交替地转过LED而透光或遮光,光敏晶体管集电极就会交替地输出高电平和低电平。当传感器轴随曲轴和配气凸轮轴转动时,信号盘上的透光孔和遮光部分便从LED与光敏晶体管之间转过,LED发出的光线受信号盘透光和遮光作用就会交替照射到信号发生器的光敏晶体管上,信号传感器中就会产生与曲轴位置和凸轮轴位置对应的脉冲信号。
由于曲轴旋转两转,传感器轴带动信号盘旋转一圈,因此,G信号传感器将产生6个脉冲信号。Ne信号传感器将产生360个脉冲信号。因为G信号透光孔间隔弧度为60。,曲轴每旋转120。就产生一个脉冲信号,所以通常G信号称为120。信号。设计安装保证120。信号在上止点前70。(BTDC70。)时产生,且长方形宽边稍长的透光孔产生的信号对应于发动机气缸1上止点前70。,以便ECU控制喷油提前角与点火提前角。因为Ne信号透光孔间隔弧度为1。(透光孔占0.5。,遮光孔占0.5。),所以在每一个脉冲周期中,高、低电平各占1。曲轴转角,360个信号表示曲轴旋转720。。曲轴每旋转120。,G信号传感器产生一个信号,Ne信号传感器产生60个信号。
捷达、桑塔纳轿车磁感应式曲轴位置传感器
1)曲轴位置传感器结构特点:捷达AT和GTX、桑塔纳2000GSi型轿车的磁感应式曲轴位置传感器安装在曲轴箱内靠近离合器一侧的缸体上,主要由信号发生器和信号转子组成,如图2-25所示。
信号发生器用螺钉固定在发动机缸体上,由磁铁、传感线圈和线束插头组成。传感线圈又称为信号线圈,磁铁上带有一个磁头,磁头正对安装在曲轴上的齿盘式信号转子,磁头与磁轭(导磁板)连接而构成导磁回路。
信号转子为齿盘式,在其圆周上均匀间隔地制作有58个凸齿、57个小齿缺和一个大齿缺。大齿缺输出基准信号,对应发动机气缸1或气缸4压缩上止点前一定角度。所以信号转子圆周上的凸齿和齿缺所占的曲轴转角为360。
2)曲轴位置传感器工作情况:当曲轴位置传感器随曲轴旋转时,由磁感应式传感器工作原理可知,信号转子每转过一个凸齿,传感线圈中就会产生一个周期变电动势(即电动势出现一次大值和一次小值),线圈相应地输出一个交变电压信号。因为信号转子上设有一个产生基准信号的大齿缺,所以当大齿缺转过磁头时,信号电压所占的时间较长,即输出信号为一宽脉冲信号,该信号对应于气缸1或气缸4压缩上止点前一定角度。电子控制单元(ECU)接收到宽脉冲信号时,便可知道气缸1或气缸4上止点位置即将到来,至于即将到来的是气缸1还是气缸4,则需根据凸轮轴位置传感器输入的信号来确定。由于信号转子上有58个凸齿,因此信号转子每转一圈(发动机曲轴转一圈),传感线圈就会产生58个交变电压信号输入电子控制单元。
每当信号转子随发动机曲轴转动一圈,传感线圈就会向电子控制单元(ECU)输入58个脉冲信号。因此,ECU每接收到曲轴位置传感器58个信号,就可知道发动机曲轴旋转了一圈。如果在1min内ECU接收到曲轴位置传感器116000个信号,ECU便可计算出曲轴转速n为2000(n=1)r/rain;如果ECU每分钟接收到曲轴位置传感器290000个信号,ECU便可计算出曲轴转速为5000(n=290000/58=5000)r/min。依此类推,ECU根据每分钟接收曲轴位置传感器脉冲信号的数量,便能计算出发动机曲轴旋转的转速。发动机转速信号和负荷信号是电子控制系统重要、基本的控制信号,ECU根据这两个信号就能计算出基本喷油提前角(时间)、基本点火提前角(时间)和点火导通角(点火线圈一次电流接通时间)三个基本控制参数。
捷达AT和GTx、桑塔纳2000GSi型轿车磁感应式曲轴位置传感器信号转子上大齿缺产生的信号为基准信号,ECU控制喷油时间和点火时间是以大齿缺产生的信号为基准进行控制的。当ECu接收到大齿缺产生的信号后,再根据小齿缺信号来控制点火时间、喷油时间和点火线圈一次电流接通时间(即导通角)。
3)丰田轿车TCCS磁感应式曲轴与凸轮轴位置传感器
丰田计算机控制系统(1FCCS)采用的磁感应式曲轴与凸轮轴位置传感器由分电器改进而成,由上、下两部分组成。上部分为检测曲轴位置基准信号(即气缸识别与上止点信号,称为G信号)发生器;下部分为曲轴转速与转角信号(称为Ne信号)发生器。
a)Ne信号发生器的结构特点:Ne信号发生器安装在G信号发生器的下面,主要由No.2信号转子、Ne传感线圈和磁头组成,如图2-26a所示。信号转子固定在传感器轴上,传感器轴由配气凸轮轴驱动,轴的上端套装分火头,转子外制有24个凸齿。传感线圈及磁头固定在传感器壳体内,磁头固定在传感线圈中。
b)转速与转角信号的产生原理与控制过程:当发动机曲轴旋转时,配气凸轮轴便驱动传感器信号转子旋转,转子凸齿与磁头间的气隙交替发生变化,传感线圈的磁通随之交替发生变化,由磁感应式传感器工作原理可知,在传感线圈中就会感应产生交变电动势,信号电压的波形如图2-26b所示。因为信号转子有24个凸齿,所以转子旋转一圈,传感线圈就会产生24个交变信号。传感器轴每转一圈(360。)相当于发动机曲轴旋转两圈(720。),所以一个交变信号(即一个信号周期)相当于曲轴旋转30。(720。÷24=30。),相当于分火头旋转15。(30。÷2=15。)。ECU每接收Ne信号发生器24个信号,即可知道曲轴旋转了两圈、分火头旋转了一圈。ECU内部程序根据每个Ne信号周期所占时间,即可计算确定发动机曲轴转速和分火头转速。为了控制点火提前角和喷油提前角,还需将每个信号周期所占的曲轴转角(30。角)分得更小。微机完成这一工作十分方便,由分频器将每个Ne信号(曲轴转角30。)等分成30个脉冲信号,每个脉冲信号就相当于曲轴转角1。(30。÷30=1。)。如将每个Ne信号等分成60个脉冲信号,则每个脉冲信号相当于曲轴转角0.5。(30。÷60=0.5。)。具体设定由转角精度要求和程序设计确定。
c)G信号发生器的结构特点:G信号发生器用来检测活塞上止点位置与判别是哪一个气缸即将到达上止点位置等基准信号。故G信号发生器又称为气缸识别与上止点信号发生器或基准信号发生器。G信号发生器由No.1信号转子、传感线圈G1、G2和磁头等组成。信号转子带有两个凸缘,固定在传感器轴上。传感线圈G1、G2相隔180。安装,G1线圈产生的信号对应于发动机第六缸压缩上止点前10。、G2线圈产生的信号对应于发动机缸压缩上止点前lO。。
d)气缸识别与上止点信号的产生原理与控制过程:G信号发生器的工作原理与Ne信号发生器产生信号的原理相同。当发动机凸轮轴驱动传感器轴旋转时,G信号转子(No.1信号转子)的凸缘便交替经过传感线圈的磁头,转子凸缘与磁头之间的气隙交替发生变化,在传感线圈Gl、G2中就会感应产生交变电动势信号。当G信号转子的凸缘部分接近传感线圈G1的磁头时,由于凸缘与磁头之间的气隙减小、磁通量增大、磁通变化率为正,因此传感线圈G1中产生正向脉冲信号,称为G1信号;当G信号转子的凸缘部分接近传感线圈G2时,由于凸缘与磁头之间的气隙减小、磁通量增大、磁通变化率为正,因此传感线圈G2中也产生正向脉冲信号,称为G2信号。当G信号转子的凸缘部分经过G1、G2的磁头时,由于凸缘与磁头之间的气隙不变、磁通量不变、磁通变化率为零,因此传感线圈G1、G2中的感应电动势均为零。当G信号转子的凸缘部分离开G1、G2的磁头时,由于凸缘与磁头之间的气隙增大、磁通量减小、磁通变化率为负,因此传感线圈G1、G2中将感应产生负向交变电动势信号。传感器每转一圈(360。)相当于曲轴转两圈(720。),因为传感线圈G1、G2相隔180。安装,所以G1、G2中各产生一个正向脉冲信号。其中G1信号对应于发动机第六缸,用来检测第六缸上止点的位置;G2信号对应于缸,用来检测缸上止点的位置。电子控制单元检测的对应位置实际上是G转子凸缘的前端接近并与传感线圈G1、G2的磁头对齐时刻(此时磁通量大、信号电压为零)的位置,该位置对应于活塞压缩上止点前10。(BT-DCl0。)位置。
差动霍尔式曲轴位置传感器
切诺基(Cherokee)吉普车与红旗CA7220E型轿车采用了差动霍尔式曲轴位置传感器,其凸轮轴位置传感器均为普通霍尔式传感器。
(1)差动霍尔式传感器结构特点
差动霍尔式传感器又称为双霍尔式传感器,其结构与磁感应式传感器相似,如图2-30a所示。它由带凸齿的信号转子和霍尔信号发生器组成。差动霍尔式传感器的工作原理与普通霍尔式传感器相同。根据霍尔式传感器的工作原理。当发动机飞轮上的齿缺与凸齿转过差动霍尔电路的两个探头时,齿缺或凸齿与霍尔探头之间的气隙就会发生变化,磁通量随之变化,在传感器的霍尔元件中就会产生交变电压信号,如图2-30b所示。其输出电压由两个霍尔信号电压叠加而成。因为输出信号为叠加信号,所以转子凸齿与信号发生器之间的气隙可以增大到(1±0.5)mm(普通霍尔式传感器仅为0.2~0.4mm),因而便可将信号转子制成像磁感应式传感器转子一样的齿盘式结构,其突出优点是信号转子便于安装。在汽车上,一般将凸齿转子装在发动机曲轴上或将发动机飞轮作为传感子。
器的信号转
(2)切诺基吉普车差动霍尔式曲轴位置传感器
1)结构特点:切诺基吉普车2.5L(四缸)、4.0L(六缸)电子控制燃油喷射式发动机采用了差动霍尔电路的霍尔式曲轴位置传感器。它安装在变速器壳体上。该传感器向ECu提供发动机转速与曲轴位置(转角)信号,作为计算喷油时刻和点火时刻的重要依据。
2.5L四缸电子控制发动机的飞轮上制有8个齿缺,如图2-31a所示。8个齿缺分成两组,每4个齿缺为一组,两组之间相隔角度为180。,同一组中相邻两个齿缺之间间隔角度为20。。4.0L六缸电子控制发动机的飞轮上制有12个齿缺,如图2.3lb所示。12个齿缺分成三组,每4个齿缺为一组,相邻两组之间相隔角度为120。,同一组中相邻两个齿缺之间间隔角度也为20。
2)工作情况:飞轮上的每一组齿缺转过霍尔探头时,传感器就会产生一组共4个脉冲信号。其中,四缸发动机每转一圈产生两组共8个脉冲信号;六缸发动机每转一圈产生三组共12个脉冲信号。
对于四缸发动机,ECU每接收到8个信号,即可知道曲轴旋转了一转,再根据接收8个信号所占用的时间,就可计算出曲轴转速。对于六缸发动机,ECU每接收到12个信号,即可知道曲轴旋转了一转,再根据接收12个信号所占用的时间,就可计算出曲轴转速。
电子控制单元控制喷油和点火时,都有一定的提前角,因此需要知道活塞接近上止点的位置。切诺基吉普车在每组信号输入ECU时,可以知道有两个气缸的活塞即将到达上止点位置。 例如,在四缸发动机控制系统中,利用一组信号,ECU可知气缸1、4活塞接近上止点;利用另一组信号可知气缸2、3活塞接近上止点。在六缸发动机控制系统中。利用一组信号,可知气缸1与6、2与5、3与4活塞接近上止点。由于第4个齿缺产生的脉冲下降沿对应于压缩上止点前4。(BTDC4。),因此第1个齿缺产生的脉冲信号下降沿对应于压缩上止点前64。(BT-DC64。),如图2-32所示。当气缸1、4对应的第1个脉冲下降沿到来时,ECU即可知道此时气缸1、4活塞位于压缩上止点前64。(BTDC64。),从而便可控制喷油提前角和点火提前角。但是,仅有曲轴转角信号,ECU还不能确定是哪一个缸位于压缩行程,哪一个缸位于排气行程,为此还需要一个气缸判别信号(即需要一只凸轮轴位置传感器)。
(3)切诺基吉普车霍尔式凸轮轴位置传感器
1)结构特点:切诺基吉普车发动机控制系统的气缸判别信号由霍尔式凸轮轴位置传感器提供,该传感器又称为同步信号传感器,安装在分电器内,主要由脉冲环(信号转子)、霍尔信号发生器组成。
脉冲环上制有凸起的叶片,占180。分电器轴转角(相当于360。曲轴转角)。没有叶片的部分也占180。分电器轴转角(360。曲轴转角)。脉冲环安装在分电器轴上,随分电器轴一同转动。
2)工作情况:当脉冲环上的叶片进入信号发生器时,传感器输出高电平(5V);当脉冲环上的叶片离开信号发生器时,传感器输出低电平(0V)。分电器轴转一圈,传感器输出一个高电平和一个低电平,高、低电平各占180。分电器轴转角(分别相当于360。曲轴转角)。同步信号的波形如图2-32所示。
当脉冲环的叶片前沿进入信号发生器、传感器输出高电平(5V)时,对于四缸发动机,表示气缸1、4活塞即将到达上止点,其中气缸1活塞位于压缩行程,气缸4活塞位于排气行程;对于六缸发动机,表示气缸3、4活塞即将到达上止点,其中气缸4活塞位于压缩行程,气缸3活塞位于排气行程。
当脉冲环的叶片后沿进入信号发生器、传感器输出低电平(0V)时,对于四缸发动机,表示即将到达上止点的仍然是气缸1、4活塞,其中气缸4活塞位于压缩行程,气缸1活塞位于排气行程;对于六缸发动机,表示气缸3活塞位于压缩行程,气缸4活塞位于排气行程。
利用凸轮轴位置传感器判别出是哪一个气缸即将到达排气上止点之后,ECU根据曲轴位置传感器信号,即可控制喷油提前角和点火提前角。
设某一时刻的喷油提前角为上止点前64。(BTI)C64。),当凸轮轴位置传感器脉冲环的叶片进入信号发生器、传感器输出高电平(5V)时,ECU判定四缸发动机的气缸4活塞位于排气行程(六缸发动机的气缸3活塞位于排气行程),此时ECU在接收到曲轴位置传感器(CPS)个脉冲信号的下降沿(BTDC64。)时,向喷油器发出喷油信号,从而实现提前64。喷油。在凸轮轴位置传感器输出高电平(5V))时,ECU还判定四缸发动机的气缸1活塞(六缸发动机气缸4活塞)位于压缩行程,此时ECU根据曲轴位置传感器CPS信号和点火提前角计算值,在活塞运行到上止点前点火提前角度时,向点火控制器发出点火指令,控制火花塞点火,实现点火提前。
利用凸轮轴位置传感器对两个气缸的位置判定作为参考点,即可按照四缸发动机1—3—4—2(六缸发动机l一5—3—6—2—4)的工作顺序,对各个气缸进行提前喷油与提前点火控制。
(4)红旗CA7720E型轿车差动霍尔式曲轴位置传感器
红旗CA7220E型轿车CA488.3型发动机上装备的SIMOS4S3型电子控制燃油喷射系统采用的差动霍尔式曲轴位置传感器由信号转子与信号发生器组成。信号转子为齿盘式,安装在变速器壳体前端,它与捷达AT、GTX型轿车用磁感应式曲轴位置传感器转子相似,在其圆周上均匀间隔地制作有58个凸齿、 57个小齿缺和一个大齿缺。大齿缺输出基准信号,对应于发动机气缸1或气缸4压缩上止点前一定角度。大齿缺所占的弧度相当于两个凸齿和三个小齿缺所占的弧度。
因为信号转子随曲轴一同旋转,曲轴旋转一圈(360。),信号转子也旋转一圈(360。),所以信号转子圆周上的凸齿和齿缺所占的曲轴转角为 360。,每个凸齿和小齿缺所占的曲轴转角均为3。(58×3。+57×3。=345。),大齿缺所占的曲轴转角为15。(2×3。+3×3。= 15。),信号波形如图2-33a所示。