西门子PLC模块6ES7193-6BP00-0DA1西门子PLC模块6ES7193-6BP00-0DA1
上海诗幕自动化设备有限公司,*从事品自动化设备研发及销售的企业,对各大自动化产品有着强大的优势,并且对优势产品有着大量的备货。与欧洲及从事电气的各大公司有着良好的协作关系。
上海诗幕自动化设备有限公司是*从事西门子工业自动化产品销售和集成的高新技术企业。 在西门子工控领域,公司以精益求精的经营理念,从产品、方案到服务, 致力于塑造一个“行业*”,以实现可的发展。 多年以来,公司坚持“以客户为本,与客户共同发展”的思想, 全力以赴为工矿用户、设计单位、工程公司提供高、高性、高可靠性的整体解决方案。 “我们不仅仅销售的产品”是公司每个员工的工作信条, 在为客户提品和方案的中,我们愿意倾听客户,和客户共同完善, 不断服务,越客户的期望。以此为基础,我们追求客户、厂商和员工三方的共赢。 本公司与德国SIEMENS公司自动化与驱动部门的长期紧作中, 建立了良好的相互协作关系,在自动化产品与驱动产品业务逐年成倍增长, 为广大用户提供了SIEMENS的新的技术及自动控制的佳解决方案。 上海诗幕自动化科技有限公司 具备以下产品优势 西门子可编程控制器,西门子屏,西门子工业以太网, 西门子数控,西门子高低压变频器,西门子电机驱动等等。
S7-200系列PLC的主要技术性能
下面以S7-200 CPU224为例说明S7系列PLC的主要技术性能。
1.一般性能
S7-200 CPU224的一般性能如表4-13所示。
表4-13 S7-200 CPU224一般性能
电源电压
DC 24V,AC 100~230V
电源电压波动
DC 20.4-28.8V,AC 84-264V(47-63Hz)
温度、湿度
水平安装0~550C,垂直安装0~450C,5~95%
大气压
860~1080hPa
保护等级
IP20到IEC529
输出给传感器的电压
DC 24V (20.4-28.8V)
输出给传感器的电流
280mA,电子式短路保护(600mA)
为扩展模块提供的输出电流
660mA
程序存储器
8K字节/典型值为2.6K条指令
数据存储器
2.5K字
存储器子模块
1个可的存储器子模块
数据后备
整个BD1在EEPROM中无需
在RAM中当前的DB1标志位、定时器、计数器等通过高能电容或电池维持,后备时间190h(400C时120h),电池后备200天
编程语言
LAD,FBD,STL
程序结构
一个主程序块(可以包括子程序)
程序执行
循环。中断控制,定时控制(1~255ms)
子程序级
8级
用户程序保护
3级口令保护
指令集
逻辑运算、应用功能
位操作执行时间
0.37μs
扫描时间监控
300ms(可重启动)
内部标志位
256,可保持:EEPROM中0~112
计数器
0~256,可保持:256,6个高速计数器
定时器
可保持:256,
4个定时器,1ms~30s
16个定时器,10ms~5min
236个定时器,100ms~54min
接口
一个RS485通信接口
可连接的编程器/PC
PG740P = 2 * ROMAN II,PG760P = 2 * ROMAN II,PC(AT)
本机I/O
数字量输入:14,其中4个可用作硬件中断,14个用于高速功能
数字量输出:10,其中2个可用作本机功能,
模拟电位器:2个
可连接的I/O
数字量输入/输出:多94/74
模拟量输入/输出:多28/7(或14)
AS接口输入/输出:496
多可接扩展模块
7个
2.输入特性
S7-200 CPU224的输入特性如表4-14所示。
表4-14 S7-200 CPU224输入特性
类型
源型或汇型
输入电压
DC 24V,“1”:14-35A,“0”:0-5A,
隔离
光耦隔离,6点和8点
输入电流
“1”:大4mA
输入(额定输入电压)
所有输入:全部0.2-12.8ms(可调节)
中断输入:(I0.0-0.3)0.2-12.8ms(可调节)
高速计数器:(I0.0-0.5)大30kHz
3.输出特性
S7-200 CPU224输出特性如表4-15所示。
表4-15 S7-200 CPU224的输出特性
类型
晶体管输出型
继电器输出型
额定负载电压
DC 24V(20.4-28.8V)
DC 24V(4-30V)
AC24-230V(20-250V)
输出电压
“1”:小DC 20V
L+/L-
隔离
光耦隔离,5点
继电器隔离,3点和4点
大输出电流
“1”:0.75A
“1”:2A
小输出电流
“0”:10μsA
“0”:0mA
输出开关容量
阻性负载:0.75A
灯负载:5W
阻性负载:2A
灯负载:DC30W,AC200W
4.扩展单元的主要技术特性
S7-200系列PLC是模块式结构,可以通过配接各种扩展模块来达到扩展功能、扩大控制能力的目的。目前S7-200主要有三大类扩展模块。
(1)输入/输出扩展模块 S7-200 CPU上已经集成了一定数量的数字量I/O点,但如用户需要多于CPU单元I/O点时,必须对做必要的扩展。CPU221无I/O扩展能力,CPU 222多可连接2个扩展模块(数字量或模拟量),而CPU224和CPU226多可连接7个扩展模块。
S7-200 PLC系列目前共提供共5大类扩展模块:数字量输入扩展板EM221(8路扩展输入);数字量输出扩展板EM222(8路扩展输出);数字量输入和输出混合扩展板EM223(8I/O,16I/O,32I/O);模拟量输入扩展板EM231,每个EM231可扩展3路模拟量输入通道,A/D转换时间为25μs,12位;模拟量输入和输出混合扩展模板EM235,每个EM235可同时扩展3路模拟输入和1路模拟量输出通道,其中A/D转换时间为25μs,D/A转换时间]100μs,位数均为12位。
基本单元通过其右侧的扩展接口用总线连接器(插件)与扩展单元左侧的扩展接口相连接。扩展单元正常工作需要+5VDC工作电源,此电源由基本单元通过总线连接器提供,扩展单元的24VDC输入点和输出点电源,可由基本单元的24VDC电源供电,但要注意基本单元所提供的大电流能力。
(2)热电偶/热电阻扩展模块 热电偶、热电阻模块(EM231)是为CPU222,CPU224,CPU226设计的,S7-200与多种热电偶、热电阻的连接备有隔离接口。用户通过模块上的DIP开关来选择热电偶或热电阻的类型,接线,测量单位和开路故障的方向。
(3)通讯扩展模块 除了CPU集成通讯口外,S7-200还可以通过通讯扩展模块连接成更大的网络。S7-200系列目前有两种通讯扩展模块:PROFIBUS-DP扩展从站模块(EM277)和AS-i接口扩展模块(CP243-2)。
S7-200系列PLC输入/输出扩展模块的主要技术性能如表4-16所示。
表4-16 S7-200系列PLC输入/输出扩展模块的主要技术性能
类型
数字量扩展模块
模拟量扩展模块
型号
EM221
EM222
EM223
EM231
EM232
EM235
输入点
8
无
4/8/16
3
无
3
输出点
无
8
4/8/16
无
2
1
隔离组点数
8
2
4
无
无
无
输入电压
DC24V
DC24V
输出电压
DC24V或AC24-230V
DC24V或AC24-230V
A/D转换时间
<250μs
<250μs
分辨率
12bit
A/D转换
电压:12bit
电流:11bit
12bit
A/D转换
PLC顺序控制设计法中的步与概念举例介绍
1. 步
顺序控制设计法基本的思想是将的一个工作周期的划分为若干个顺序相连的阶段,这些阶段称为步(Step),可以用编程元件,(例如辅助继电器M和顺序控制继电器S)来代表各步。步是根据输出量的状态变化来划分的,在任何一步之内,各输出量的ON/OFF状态不变,但是相邻两步输出量的状态是不同的,步的这种划分使代表各步的编程元件的状态与各输出量的状态是之间有着极为简单的逻辑关系。
送料小车开始停在左测限们开关X2处(见图17),按下起动按钮X0,X2变为ON,打开贮料斗的闸门,开始装料,同时用定时器T0定时,10s后关闭贮料斗的闸门,Y0变为ON,开始右行,碰到限位开关X1后停下来卸料(Y3为ON),同时用定时器T1定时;5s后Y1变为ON,开始左行,碰到限位开关X2后返回初始状态,停止运行。
根据Y0~Y3的ON/OFF状态的变化,显然一个工作周期可以分为装料,右行、卸料和左行这4步,另外还应设置等待起动的初始步,分别用M0~M4来代表这5步,图17左上部是小车运动的空间示意图,左下部是是有关编程元件的波形图(时序图),右边是描述该的顺序功能图,图中用矩形方框表示步,方框中可以用数字表示该步的编号,一般用代表该步的编程元件的元件的元件号作为步的编号,如M0等,这样在根据顺序功能图设计梯形图较为方便。
2. 初始步
与的初始状态相对应的步称为初始步,初始状态一般是等待起动命令的相对静止的状态。初始步用双线方框表示,每一个顺序功能图至少应该有一个初始步。
3. 活动步
当正处于某一步所在的阶段时,该步处于活动状态,称该步为“活动步”。步处于活动状态时,相应的被执行:处于不活动状态时,相应的非存储型被停止执行。
4. 与步对应的或命令
可以将一个控制划分为被控和施控,例如在数控车床中,数控装置是施控,而车床是被控。对于被控,在某一步中要完成某些“”(action);对于施控,在某一步中则要向被控发出某些“命令”(command)。为了叙述方便,
下面将命令或统称为,并用矩形框中的文字或符号表示,该矩形框应与相应的符号相连。
如果某一步有几个,可以用图18中的两种画法来表示,但是并不隐含这些之间的任何顺序。说明命令的语句应清楚地表明该命令是存储型的还是非存储型的。例如某步的存储型命令“打开1号阀并保持”,是指该步为活动步时打开,该步为不活动时继续打开;非存储型命令“打开1号阀”,是指该步为活动步时打开,为不活动步时关闭。
除了以上的基本结构之外,使用的修饰词(见表1)可以在一步中完成不同的。修饰词允许在不逻辑的情况下控制。例如,可以使用修饰词L来配料阀打开的时间。
表1 的修饰词
N
非存储型
当步变为不活动步时终止
S
置位(存储)
当步变为不活动步时继续,直到被复位
R
复位
被修饰词S,SD,SL,或DS起动的被终止
L
时间
步变为活动步时被起动,直到步变为不活动步或设定时间到
D
时间
步变为活动步时定时器被起动,如果之后步仍然是活动的,被起动和继续,直到步变不活动步
P
脉冲
当步变为活动步,被起动并且只执行一次
SD
存储与时间
在时间之后被起动,一直到被复位
DS
与存储
在之后如果步仍然是活动的,被起动直到被复位
SL
存储与时间
步变为活动步时被起动,一直到设定的时间到或被复位
在图17中,定时器T0的线圈应在M1为活动步时“通电”,M1为不活动步时断电,从这个意义上来说,T0的线圈相当于步M1的一个,所以将T0作为步M1的来处理。步M1下面的转换条件T0由在时时间到时闭合的T0的常开触点提供。因此框中的T0对应的是T0的线圈,转换条件T0对应的是T0的常开触点。
西门子PLC模块6ES7193-6BP00-0DA1西门子PLC模块6ES7193-6BP00-0DA1
西门子PLC定子电阻起动电路及编程示例
这个示例程序说明了带短路软起动开关的鼠笼转子的三相感应电动机的自动起动。通过这种短路软起动,电动机减速起动,并在一定时问段后达到额定转速。
通过按接在输入端I0.0的点动开关ON来实现电机软起动。如果按接在输入端I0.1的点动开关,则停比电机。电机电路断路器接在输入端I0.2,当电机过载时电机电路断路器打开,电机停止。
起动电路图
程序框图
程序和注释
如果接在输入端I0.0的ON点动开关(常开触点)和接在输入端I0.1的OFF点动开关(常闭触点)同时,则设置内存标志位M1.0以互锁。自至两个点动开关又回到初始状态,才取消互锁。
接在输出端Q0.0的电机起动器的条件(与逻辑)如下:按下ON点动开关,无互锁(M1.0),电泪L电路断路器(I0.2)常闭触点,未,OFF点动开关(I0.1未。另外,再通过对Q0.0作或逻辑运算完成起动锁定。现在,电机以减速起动,因为起动电阻还未被短接。
如果电机己起动(Q0.0),并且用于旁路器的输出QO门还未被置位,那么计时器T37开始计时。在设定的5秒钟后,如果电泪L仍处于起动状态(Q0.0),则起动接在输出端Q0.1的旁路器。另外再通过对Q0.1作或逻辑运算完成旁路锁定。
西门子PLC模块6ES7193-6BP00-0DA1
PLC顺序控制的几种简易设计
引言
在生产机械的自动控制领域,PLC顺序控制的应用量大面广。然而,工艺不同的生产机械要求设计不同的控制梯形图。目前,不少电气设计人员仍然采用设计法来设计PLC顺序控制,不仅设计效率低,容易出差错,而且设计阶段难以发现错误,需要多次调试、修改才符合设计要。本文提出的4种简易设计,能快速地一次设计*PLC顺序控制。
顺序控制的特点及设计思路
1.特点顺序控制是指按照预定的受控执行机构顺序及相应的转步条件,一步一步进行的自动控制。其受控设备通常是顺序不变或相对固定的生产机械。这种控制的转步主令大多数是行程开关(包括有触点或无触点行程开关、光电开关、干簧管开关、霍尔元件开关等位置检测开关),有时也采用压力继电器、时间继电器之类的转换元件作为某些步的转步主令。
为了使顺序控制工作可靠,通常采用步进式顺序控制电路结构。所谓步进式顺序控制,是指控制的任一程序步(以下简称步)的得电必须以前一步的得电并且本步的转步主令已发出为条件。对生产机械而言,受控设备任一步的机械是否执行,取决于控制前一步是否已有输出及其受控机械是否已完成。若前一步的未完成,则后一步的无法执行。这种控制的互锁严密,即便转步主令元件失灵或出现误操作,亦不会顺序错乱。
2.设计思路本文提出的4种简易设计都是先设计步进阶梯,在步进阶梯实现由转步主令控制辅助继电器得失电;然后根据步进阶梯设计输出阶梯,在输出阶梯实现由辅助继电器控制输出继电器得失电。这4种设计法所设计的梯形图电路结构及相应的指令应适用于大多数PLC机型,具有通用性。
由于各种PLC机型的编程元件代号及其编号不尽相同,为便于阐述,本文约定:所有梯形图中的输入继电器、输出继电器、辅助继电器(又称内部继电器)的代号分别为:X、Y、M。设计中所用到的某些功能指令,如置位指令约定为S×,复位指令为R×;移位指指令为SR×。其中的“×”表示编程元件的编号,用十进制数表示。用这些设计实际的控制时,应将编程元件代号和编号变换成所选用的PLC机型对应的代号和编号。
图1 顺序控制流程
下面分别介绍各种设计。其中,前3种的设计依据都是图1所示的顺序控制流程。图中,步1的转步主令X0为连接启动按钮的输入继电器(为简明起见,后述的转步主令均省去“输入继电器”几个字,只提输入),X1为原位开关,X2、X3、X4分别为步2、3、4的转步主令开关。M1~M5分别为各步的受控辅助继电器。Y1~Y4分别为各步受控的输出继电器。
一、逐步得电同步失电型步进顺序控制设计法
如图2所示,这种设计是根据“与”、“或”、“非”的基本逻辑关系,设计成串联、并联或串、并联复合的电路结构。
图2 逐步得电同步失电步进顺控梯形图
1.步进阶梯的设计步进阶梯的结构
如图2a所示。步1的M1得电条件是受控机械原位开关X1处于压合状态(若受控机械有多个执行机构,则要求每个执行机构的原位开关均处于压合状态),原位条件后按起动按钮X0才能得电。M1得电后自锁,并为步2提供步进条件(M1的常开触点)。步1的执行完成时触发的行程开关X2作为步2的转步条件。步2的M2的输入其步进条件和转步条件后得电自锁,并为步3提供步进条件。按此规律即可实现后续每一工作步辅助继电器的得电和自锁。停止步M5的步进条件和转步条件分别为:后一个工作步M4发出的步进条件(M4的常开触点)和该步完成时所触发的转步X1。由于M5的得电令控制失电,所以M5的回路不自锁,而且要将其常闭触点串联在步1回路的左端。从步2起后续各个步的回路构成分支回路。一旦M5得电便使整个失电。如不用分支回路的结构,也可采用图3所示的回路。即把M5常闭触点分别串联在每步辅助继电器的回路上。应该注意的是:无论工作步还是停止步,如果某步的转步主令有多个,则应将多个转步主令互相串联。
图3 逐步得电同步失电梯形图
2.输出阶梯的设计输出阶梯
如图2b所示。其设计是:(1)在控制流程图中,找出某输出继电器M一步开始得电和一步开始失电,以此确定其得电(步进阶梯中使M开始得电的辅助继电器常开触点)和失电(步进阶梯中使M开始失电的辅助继电器常闭触点);(2)将得电、失电和受控输出继电器线圈串联。如果某个输出继电器在一个工作循环中多次得电失电,则将每次得失电的串联互相并联即可。例如,图1中输出继电器Y1要求在步1和步3得电,在其余步失电。在图2b画其控制回路时,将图1所示的次得电M1和次失电M2串联,第二次得电M4和第二次失电串联,然后将二者并联起来,再与Y1的线圈串联便构成Y1的控制回路。其余依此类推。
二、逐步得电逐步失电型步进顺序控制设计法
1.步进阶梯设计
按图1所示的控制流程,采用逐步得电逐步失电型顺序控制设计法设计的步进阶梯如图4a所示,其电路结构与图3的不同点是每步的失电由下一步辅助继电器的常闭接点控制;之二是步1回路必须串联步2至后工作步4的辅助继电器常闭触点。以防电路工作时,因误操作再次起动而控制顺序错乱。其余的电路结与图3相同。
2.输出阶梯设计输出阶梯如图4b所示,输出继电器的控制回路根据控制流程直观确定。例如,输出继电器Y1要求在步1、3得电,则将步1、3的辅助继电器M1、M3的常开触点并联,再与Y1的线圈串联即可。其余输出继电器的控制回路构成与此相同。
图4 逐步得电逐步失电型顺控梯形图
PLC技术展的终趋势仍然是人们所争论的焦点。大多数人认为,PLC将会继续失去市场份额;更有甚者认为,在工业PC面前,PLC将会一步一步走向死亡;但也有一部分人相信,一些特殊工业应用领域仍将为PLC提供一定的市场份额。本文从11方面介绍了PLC在其上的应用趋势。