房屋检测报告会有什么建议?
根据房屋现场检测结果,结合房屋评级结果、各构件及子单元的适修性,提出以下建议:
(1)对涂料层、粉刷层受损的承重墙体进行修复处理。
(2)对开裂情况严重的构件进行加固处理,确保安全使用。
(3)建议定期对房屋进行监测,发现异常情况及时检测鉴定。
房屋振动情况检测方法
根据测试依据以及业主的测试需求,数据分析处理主要分为如下三个步骤:“数据预处理-数据分析-数据评估”。
(1)数据预处理—滤波降噪
首先,在信号传输的所有中间环节中,任何电流的存在都会产生热噪声及其他噪声,产生信号的传感器和处理信号的仪器设备都能将这些噪声引入信号之中;其次,由于传感器处于常处于恶劣的外部环境中,干扰源类型多而复杂,如交流电源及其谐波干扰,雷电、电等的射频干扰、电台电视台的信号干扰等等。因此,对原始测试数据需要进行去除噪声预处理。
(2)数据分析
数据分析方法有如下三种:
(1)概率统计分析
运用INV3020系列高性能振动信号采集分析系统,在时域分析菜单栏中,选取概率统计分析,可获得设定时段内的值、小值、均值、方差和标准差等。
(2)频域分析
运用INV3020系列高性能振动信号采集分析系统,对采集得到的数据作各种频谱分析(幅值谱分析、自功率谱分析、互功率谱分析、传递函数、相干函数)等,基于以上分析结果获得振动信号的频谱特点,继而获得结构的关键振动特性。
(3)时频域分析
运用INV3020系列高性能振动信号采集分析系统,通过时频域积分,获得测点各方向的速度和振幅结果,并通过*的时频域分析手段,获得结构量测信号的时频域特性。
4.9.3测试与评价成果
(1)现场实测振动加速度时程和频谱数据以及规范要求的1/3倍频程水平向振级、铅垂向振级以及分频振级。
(2)振动速度峰值和1/3倍频程振动速度曲线。
(3)对房屋振动相关指标进行综合评价并与规范限值进行对比,判定房屋是否符合新增设备振动控制标准,出具检测报告,并提出加固建议。
房屋结构材料强度检测
现场采用ZC4型砖回弹仪,依照《砌体工程现场检测技术标准》(GBT 50315-2011)对砌体砖强度进行了检测。检测结果表明,普通砖强度推定为MU3.8,小于现行规范要求。
现场采用SJY800B型贯入式砂浆强度检测仪,依照《贯入法检测砌筑砂浆抗压强度技术规程》(JGJ/T 136-2017)对砌筑砂浆进行了强度检测,抽样数量和部位与砖强度抽样部位一致。
检测结果表明,混合砂浆强度推定为M0.8,小于现行规范要求。
超声波检测混凝土内部缺陷检测方法注意事项
对于既有混凝土构件,由于施工质量问题或者后期荷载过大等问题,可能会造成混凝土内部存在一些缺陷,严重影响着结构的安全与耐久性。下面就其超声波检测混凝土内部缺陷的主要注意事项进行简要论述。
一、检测范围
超声波检测混凝土内部缺陷的检测主要为房屋建筑、市政工程和一般构筑物中混凝土结构的现场检测,不适用于轻骨料混凝土结构的现场检测。
二、 检测内容
混凝土内部孔洞或不密实
三、检测标准
《混凝土结构现场检测技术标准》GB/T50784-2013
房屋监测报警值建议
根据房屋结构特点、完损状况及相邻工程的可能影响程度制定裂缝、沉降变形报警值;拟定监测内容、时间、期限、频率和测量成果提交方式,并在监测过程中,根据变化情况,作适当调整。
综合考虑被监测房屋目前的建筑结构现状,并结合以往的工程经验,建议监测报警值界定如下:
1)累计沉降过20mm或沉降速率连续2天过2mm/天;
2)倾斜率增量过1‰;
3)结构裂缝宽度增量过1mm。
一旦过上述报警值,建设方和施工单位应启动应急预案。
房屋检测前应检校仪器,尤其是照准部水准管的检验与校正。投影时经纬仪要在固定的测站上仔细对中,并严格整平,对中整平之后,应检查竖轴的垂直情况。
方法是:旋转照准部,使长水准管与任意两个脚螺旋的连线平行,此时水准气泡应居中,然后将照准部旋转180度,此时的水准气泡偏移量不得大于0.5格。
房屋变形检测方案
本次房屋变形检测主要包括房屋整体倾斜和沉降检测监测两项,分为初始检测,终复测两个阶段。
1)初始检测
房屋沉降观测点的布设、初始值的测定
在能反映房屋位移特征的部位设置沉降监测点。若房屋已设有沉降观测点并保存完好,可利用已有沉降观测点。监测点位置、密度根据实际情况设置,
房屋监测点设置为每10~20m布点及房屋转角处、伸缩缝左右等设置沉降观测点,初始值采用施测两次高程的平均值。全过程使用徕卡WILD NA2水准仪对房屋沉降进行检测监测。
房屋整体倾斜检测
对房屋四周墙体或柱体进行倾斜测量,检测房屋整体是否存在倾斜,并做好监测初始值,初始值采用施测两次倾斜的平均值作为基准数据。使用徕卡TCR1202全站仪对房屋倾斜进行检测监测。
采用TCR 1202型全站仪对房屋外墙进行倾斜率测量,明确房屋目前实际倾斜情况。
房屋质量检测有哪些类型?
某办公楼为一栋砖混结构房屋,房屋共4层(局部3层),建筑面积约为2587.2m2,开间尺寸主要为3.3m、6.6m,进深尺寸主要为4.8m,房屋建造于1984年。
房屋采用烧结普通砖加混合砂浆砌筑,楼屋面(屋面指三层平屋面)均采用预制混凝土板,四层屋面为瓦屋面,房屋原设计图纸资料均缺失,施工单位、设计单位均不详。
结构材性检测
结构材性检测的内容与方法主要包括:
混凝土强度——采用回弹法,现场条件具备时采用钻芯法校核。按照《建筑结构检测技术标准》等规范和甲方提出的重点检测部位的要求布置测点位置。
甲方提出屋顶36吨水箱,10-12轴电梯核心筒,22轴集水井等部位结构变动较大,二楼健身房新建游泳池等部位需要重点检测。布点位置详见图1和图2。
2.外观质量缺陷及结构损伤检测
结构裂缝检测与鉴定(裂缝编号,标出裂缝大小,并注明裂缝位置,照出裂缝照片)
构件外观缺陷检测,包括:柱、梁、板支撑系统、屋面系统、围护系统等。检测构件的外观缺陷,如:变形、破损、锈蚀、歪闪等。用照片和文字形式予以纪录。
房屋倾斜检测如何测量?
1、房屋倾斜检测
为明确房屋目前实际倾斜情况,现场采用TCR1202+R400型全站仪对房屋进行倾斜率测量。
测量结果表明,房屋整体倾斜率为向北1.83‰,未过《建筑地基基础设计规范》(GB50007-2011)允许值4‰(测量结果包含原始施工误差)。
2、房屋不均匀沉降检测
为了解受检房屋目前不均匀沉降情况,现场采用WILD NA2型水准仪仪对受检房屋相对高差进行检测。
测量结果表明,受检房屋相对高差为1.92‰,各测点相对高差均在《建筑地基基础设计规范》(GB50007-2011)允许范围内(测量结果包含原始施工误差)。
房屋安全隐患排查包括什么
近年来由于城市工业化和商业化的迅速发展,城市建设用地日趋紧张,有些已建成的建筑物已经不能适应日益繁荣的物质、文化需求,使用功能受到限制,需要进一步扩大使用面积。
在这种情况下建筑加层技术就成了扩大房屋面积的一个很好手段,由于它是在旧建筑物上加层,不占用土地或占用很少一部分土地,因此,可以缓解现今土地资源紧张的形势。此外,
加层比新建房屋的投资要少得多,这对于资金紧缺的情况,加层不失为一种很好的举措。近年来,各类房屋加层改造的房屋检测以及房屋加固设计施工项目日益增多。
钢结构焊缝磁粉检测内容
4.6.1.4 在施加磁悬液时,可先喷洒一遍磁悬液使被测部位表面湿润,在磁化时再次喷洒磁悬液。磁悬液宜喷洒在行进方向的前方,磁化应一直持续到磁粉施加完成为止,形成的磁痕不应被流动的液体所破坏。
4.6.1.5 磁痕观察与记录应按下列要求进行;
1.磁痕的观察应在磁悬液施加形成磁痕后立即进行;
2.采用非荧光磁粉时,应在能清楚识别磁痕的自然光或灯光下进行观察。
(观察面亮度应大于500lx);采用荧光磁粉时,应使用符合本标准第5.2.8条规定的黑光灯装置,并应在能识别荧光磁痕的亮度下进行观察(观察面亮度应小于20lx);
3.应对磁痕进行分析判断,区分缺陷磁痕和非缺陷磁痕;
4.可采用照相、绘图等方法记录缺陷的磁痕。
4.6.1.6 检测完成后,应按下列要求进行后处理:
1.被测试件因剩磁而影响使用时,应及时进行退磁;
2.对被测部位表面应清除磁粉,并清洗干净,必要时应进行防锈处理。
房屋振动测试布点要求
按照委托方的要求及新增设备平面布置图,房屋的各个楼层设置多拾振器,拾振器应牢固安装在平整、坚实的地面上,不应置于地毯、架空的地板或松软的地面上。每个测点安装X、Y、Z三个方向拾振器, 三个方向分别为房屋的横向,纵向与竖向,拾振器安装好后接入数据采集仪,设置好采样参数好开始采集数据,采集数据应在所有可能引起振动设备都工作的状态下采集,采集时间不少于1000s,终对采样数据进行分析提交检测结果。
待检测房屋沉降监测点、倾斜监测点布置
在待检测房屋四周布置沉降监测点并进行沉降初值测量,各沉降监测点的高程通过埋设在周边的工程测量基准点高程形成一条闭合环线水准路线。
在两个或两个以上不同的位置设置基准点,基准点设在房屋沉降变形影响范围外,便于长期保存和观测的稳定位置。
水准观测的精度按照《建筑变形测量规范》(JGJ 8-2016)二级要求执行。水准观测的作业方法按照《*一、二等水准测量规范》(GB/T 12897-2006)二等水准要求执行。
在房屋四周布置倾斜观测点,倾斜观测点选择建筑四周棱线的投影点,在现场根据实际情况灵活选取,倾斜观测作为变形观测的辅助项目。
混凝土裂缝产生的原因
1、塑性收缩裂缝
塑性裂缝多在新浇注的混凝土构件暴露于空气中的上表面出现,塑性收缩是指混凝士在凝结之前,表面因失水较快而产生的收缩塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不-,互不连贯状态,较短的裂缝一般长20~30cm较长的裂缝可达2~3m,宽1~5mm。
塑性裂缝产生的主要原因为:混凝土在终凝前几乎没有强度或强度很小,或者混凝土网刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,
造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。影响混凝土塑性收缩开裂的主要因素有水灰比、混凝土的凝结时间,环境温度、风速、相对湿度等等。
2、沉降收缩裂缝
沉陷裂缝的产生是由于结构地基土质不匀松软或回填士不实或浸水而造成不均匀沉降所致,或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致,特别