喀什回收/维修西门子变频器MM430大量回收/SIEMENS欢迎您
我公司供应德国原装现货 当天办款 当天发货 我公司主营西门子各系列PLC (S7-200 SMART S7-300 S7-400 S7-1500)
触摸屏 变频器 (MM系列 G120 G120C G110) 伺服 (V90 ) 数控备件 (PCU50 NCU CCU 轴卡) 等
价格优势 产品为西门子原装正版产品 我公司售出的产品 按西门子标准质保
产品本身有质量问题 质保一年 公司秉承:以信待人 以诚待人 质量如生命 客户至上的经营理念
竭诚为您服务 您的肯定是我们*的动力 我们将期待与您长期持久的合作。
“诚信经商,客户至上”是公司成立之初所确立的宗旨,“罚十”一直是我公司的主动*,
公司具有雄厚的技术实力及多年从事 SIEMENS 产品的销售经验 随时恭候您的来电!!

当有过电压时(即过正常运行电压的高电压),避雷器即呈现低电阻泄放能量,同时电压的幅值,确保电气设备的绝缘不被击穿。不同于变压器变换电压是为了传输电能;电压互感器变换电压的目的在于为测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器。

PLC模拟量转换方法 1、基本概念 我们生活在一个物质的世界中。世间所有的物质都包含了化学和物理特性,我们是通过对物质的表观性质来了解和表述物质的自有特性和运动特性。这些表观性质就是我们常说的质量、温度、速度、压力、电压、电流等用数学语言表述的物理量,在自控领域称为工程量。这种表述的优点是直观、容易理解。在电动传感技术出现之前,传统的检测仪器可以直接显示被测量的物理量,其中也包括机械式的电动仪表。 2、标准信号 在电动传感器时代,中央控制成为可能,这就需要检测信号的远距离传送。但是纷繁复杂的物理量信号直接传送会大大降低仪表的适用性。而且大多传感器属于弱信号型,远距离传送很容易出现衰减、干扰的问题。因此才出现了二次变送器和标准的电传送信号。二次变送器的作用就是将传感器的信号放大成为符合工业传输标准的电信号,如0-5V、0-10V或4-20mA(其中用得*多的是4-20mA)。而变送器通过对放大器电路的零点迁移以及增益调整,可以将标准信号准确的对应于物理量的被检测范围,如0-100℃或-10-100℃等等。这是用硬件电路对物理量进行数学变换。中央控制室的仪表将这些电信号驱动机械式的电压表、电流表就能显示被测的物理量。对于不同的量程范围,只要更换指针后面的刻度盘就可以了。更换刻度盘不会影响仪表的根本性质,这就给仪表的标准化、通用性和规模化生产带来的无可限量的好处。 3、数字化仪表 到了数字化时代,指针式显示表变成了更直观、更的数字显示方式。在数字化仪表中,这种显示方式实际上是用纯数学的方式对标准信号进行逆变换,成为大家惯的物理量表达方式。这种变换就是依靠软件做数学运算。这些运算可能是线性方程,也可能是非线性方程,现在的电脑对这些运算是易如反掌。 4、信号变换中的数学问题 信号的变换需要经过以下过程:物理量-传感器信号-标准电信号-A/D转换-数值显示。 声明:为简单起见,我们在此讨论的是线性的信号变换。同时略过传感器的信号变换过程。 假定物理量为A,范围即为A0-Am,实时物理量为X;标准电信号是B0-Bm,实时电信号为Y;A/D转换数值为C0-Cm,实时数值为Z。 如此,B0对应于A0,Bm对应于Am,Y对应于X,及Y=f(X)。由于是线性关系,得出方程式为Y=(Bm-B0)*(X-A0)/(Am-A0)+B0。又由于是线性关系,经过A/D转换后的数学方程Z=f(X)可以表示为Z=(Cm-C0)*(X-A0)/(Am-A0)+C0。那么就很容易得出逆变换的数学方程为X=(Am-A0)*(Z-C0)/(Cm-C0)+A0。方程中计算出来的X就可以在显示器上直接表达为被检测的物理量。 5、plc中逆变换的计算方法 以西门子S7-200和4-20mA为例,经A/D转换后,我们得到的数值是6400-32000,及C0=6400,Cm=32000。于是,X=(Am-A0)*(Z-6400)/(32000-6400)+A0。 例如某温度传感器和变送器检测的是-10-60℃,用上述的方程表达为X=70*(Z-6。经过PLC的数学运算指令计算后,hmi可以从结果寄存器中读取并直接显示为工程量。 用同样的原理,我们可以在HMI上输入工程量,然后由软件转换成控制系统使用的标准化数值。 在西门子S7-200中,(Z-6400)/25600的计算结果是非常重要的数值。这是一个0-1.0(100%)的实数,可以直接送到PID指令(不是指令向导)的检测值输入端。PID指令输出的也是0-1.0的实数,通过前面的计算式的反计算,可以转换成6400-32000,送到D/A端口变成4-20mA输出。 以上讲述的是PLC中工程量转换的基本方法,程序的编写则因人、因事而异。但是万变不离其衷。

然而到目前为止,由于光伏发电的成本仍显著高于其他发电,光伏行业仍然主要由产业政策驱动。这些举措充分说明引导光伏行业由政策扶植向市场主导转移的决心。同时,随着光伏发电行业规模化效应的凸显和光伏组件行业激烈的市场竞争,光伏装机成本明显下降。

西门子PLC梯形图的编程方法主要应用于使用西门子PLC系统产品的电气控制环境。电气技术人员如果要在短时间内掌握西门子PLC梯形图的编程方法,要首先了解西门子PLC梯形图的编程规则,知晓西门子PLC梯形图的编程原则,编写方法及注意编写注意事项。然后在此基础上,结合实际的西门子PLC梯形图编程实例,体会西门子PLC梯形图的编程特色,必定会在西门子PLC梯形图的编程方面有所领略。 本文会为大家介绍一些西门子PLC梯形图的编程规则,篇幅较长,大家做好准备开始学了吗? 1、西门子PLC梯形图的结构特点 西门子PLC梯形图主要由母线、触点、线圈或用方框表示的指令框等构成的。 (1)母线 在西门子PLC梯形图中,左右两侧的母线分别称为左母线和右母线,是每条程序的起始点和终止点,也就是说梯形图中的每一条程序都是始于左母线,终于右母线的。 一般情况下,西门子PLC梯形图编程时,惯性的只画出左母线,省略右侧母线,但其所表达梯形图程序中的能流仍是由左母线经程序中触点I0.1、I0.2、线圈Q0.0等至右母线中的过程。 (2)触点 在西门子PLC梯形图中,触点可分为常开触点和常闭触点,其中常开触点符号为“-| |-”,常闭触点符号为“-|/|-”,可使用字母I、Q、M、T、C进行标识,且这些标识一般写在其相应图形符号的正上方。 3)线圈 西门子PLC梯形图中的线圈符号为“-( )-”,可使用字母Q、M、SM等进行标识,且字母一般标识在括号上部中间的位置。 在西门子PLC梯形图中,将其触点和线圈等称为程序中的编程元件。编程元件也称为软元件,是指在PLC编程时使用的输入/输出端子所对应的存储区以及内部的存储单元、寄存器等。 根据编程元件的功能,西门子PLC梯形图中的常用的编程元件主要有输入继电器(I)、输出继电器(Q)、辅助继电器(M、SM)、定时器(T)、计数器(C)和一些其他较常见的编程元件等。 (1)输入继电器(I)的标注 西门子PLC梯形图中的输入继电器用“字母I+数字”进行标识,每个输入继电器均与PLC的一个输入端子对应,用于接收外部开关信号。 输入继电器由PLC端子连接的开关部件的通断状态(开关信号)进行驱动,当开关信号闭合时,输入继电器得电,其对应的常开触点闭合,常闭触点断开。 (2)输出继电器(Q)的标注 西门子PLC梯形图中的输出继电器用“字母Q+数字”进行标识,每一个输出继电器均与PLC的一个输出端子对应,用于控制PLC外接的负载。 输出继电器可以由PLC内部输入继电器的触点、其他内部继电器的触点或输出继电器自己的触点来驱动 3)辅助继电器(M、SM)的标注 在西门子PLC梯形图中,辅助继电器有两种,一种为通用辅助继电器,一种为特殊标志位辅助继电器。 ①通用辅助继电器的标注。通用辅助继电器,又称为内部标志位存储器,如同传统继电器控制系统中的中间继电器,用于存放中间操作状态,或存储其他相关数字,用“字母M+数字”进行标识。 通用辅助继电器M0.0既不直接接受外部输入信号,也不直接驱动外接负载,它只是作为程序处理的中间环节,起到桥梁的作用。 ②特殊标志位辅助继电器的标注。特殊标志位辅助继电器,用“字母SM+数字”标识,通常简称为特殊标志位继电器,它是为保存PLC自身工作状态数据而建立的一种继电器,用于为用户提供一些特殊的控制功能及系统信息,如用于读取程序中设备的状态和运算结果,根据读取信息实现控制需求等。一般用户对操作的一些特殊要求也可通过特殊标志位辅助继电器通知CPU系统。 (4)定时器(T)的标注 在西门子PLC梯形图中,定时器是一个非常重要的编程元件,用“字母T+数字”进行标识,数字从0~255,共256个。不同型号的PLC,其定时器的类型和具体功能也不相同。在西门子S7-200系列PLC中,定时器分为3种类型,即接通延时定时器(TON)、保留性接通延时定时器(TONR)、断开延时定时器(TOF),三种定时器定时时间的计算公式相同,即T=PT×S(T为定时时间,PT为预设值,S为分辨率等级)其中,PT预设值根据编程需要输入设定值数值,分辨率等级一般有1ms、10ms、100ms三种,由定时器类型和编号决定。 ①接通延时定时器(TON)的标注。接通延时定时器是时器得电后,延时一段时间(由设定值决定)后其对应的常开或常闭触点才执行闭合或断开动作;当定时器失电后,触点立即复位。 接通延时定时器(TON)在PLC梯形图中的表示方法如图3-11所示,其中,方框上方的“???”为定时器的编号输入位置;方框内的TON代表该定时器类型(接通延时);IN为起动输入端;PT为时间预设值端(PT外部的“???”为预设值的数值);S为定时器分辨率,与定时器的编号有关。 例如,某段PLC梯形图程序中所用定时器编号为T37,预设值PT为300,定时分辨率为100ms。 可以计算出,该定时器的定时时间为300×100ms=30000ms=30s;则在该程序中,当输入继电器I0.3闭合后,定时器T37得电,延时30s后控制输出继电器Q0.0的延时闭合的常开触点T37闭合,使输出继电器Q0.0线圈得电。 ②保留性接通延时定时器(TONR)的标注。保留性接通延时定时器(TONR)与上述的接通延时定时器(TON)原理基本相同,不同之处在于在计时时间段内,未达到预设值前,定时器断电后,可保持当前计时值,当定时器得电后,从保留值的基础上再进行计时,可多间隔累加计时,当到达预设值时,其触点相应动作(常开触点闭合,常闭触点断开)。 保留性接通延时定时器(TONR)在PLC梯形图中的表示方法如图3-13所示,其中,方框上方的“???”为定时器的编号输入位置;方框内的TONR代表该定时器类型(接通延时);IN为起动输入端;PT为时间预设值端(PT外部的“???”为预设值的数值);S为定时器分辨率,与定时器的编号有关③断开延时定时器(TOF)的标注。断开延时定时器(TOF)是时器得电后,其相应常开或常闭触点立即执行闭合或断开动作;当定时器失电后,需延时一段时间(由设定值决定),其对应的常开或常闭触点才执行复位动作。
