房屋质量检测安全性如何评级?
依据《民用建筑可靠性鉴定标准》(GB 50292-2015)的相关要求,按构件、子单元、鉴定单元三个层次对受检房屋进行评级。
依据上述分析,现场主要通过对房屋上部结构反应检查来确定房屋地基的变形情况。
现场检测结果表明,受检房屋均未见明显的倾斜及不沉降现象,房屋部分墙体(主要为四层)出现开裂及其他损伤,
可认定受检房屋基础承载力基本满足使用要求。房屋地基基础的安全性等级评定为Bu级。
看到以上危房鉴定报道后,相信大家对危房鉴定有了很直观的认识,如果有不懂得也可以来电咨询,本公司*从事房屋检测、危房鉴定、既有建筑物可靠性鉴定、厂房质量检测等相关业务
超声波检测混凝土内部缺陷检测方法注意事项
对于既有混凝土构件,由于施工质量问题或者后期荷载过大等问题,可能会造成混凝土内部存在一些缺陷,严重影响着结构的安全与耐久性。下面就其超声波检测混凝土内部缺陷的主要注意事项进行简要论述。
一、检测范围
超声波检测混凝土内部缺陷的检测主要为房屋建筑、市政工程和一般构筑物中混凝土结构的现场检测,不适用于轻骨料混凝土结构的现场检测。
二、 检测内容
混凝土内部孔洞或不密实
三、检测标准
《混凝土结构现场检测技术标准》GB/T50784-2013
磁粉检测
磁粉检测应按照预处理、磁化、施加磁悬液、磁痕观察与记录、后处理等步骤进行。
4.6.1.2 预处理应符合下列要求:
1应对试件探伤面进行清理,清除监测区域内试件上的附着物(油漆、油脂、涂料、焊接飞浅、氧化皮等);在对焊接进行磁粉检测时,清理区域应由焊缝向两侧母材方向各延伸20mm的范围;
2.根据工作表面的状况、试件使用要求,选用油剂载液或水剂载液;
3.根据现场条件、灵敏度要求,确定用非荧光磁粉或荧光磁粉;
4.根据被测试件的形状、尺寸选定磁化方法。
4.6.1.3 磁化应符合下列规定:
1.磁化时,磁场方向宜与探测的缺陷方向垂直,与探伤面平行;
2.当无法确定缺陷方向或有多个方向的缺陷时,应采用旋转磁法或采用两次不同方向的磁化方法.采用两次不同方向的磁化时,两次磁化方向间应垂直;
3.检测时,应先放置灵敏度试片在试件表面,检测磁场强度和方向以及操作方法是否正确;
4.用磁轭检测时,应有覆盖区,磁轭每次移动的覆盖部分应在10mm~20mm之间;
5.用触头法检测时,每次磁化的长度宜为75mm~200mm;检测过程中,应保持触头端干净,触头与被检表面应接触良好,电极下宜采用衬垫;
6.伤装置在被检部位放稳后方可接通电源,移去时应先断开电源。
房屋检测有哪些后续服务
检测报告完成后,根据工程设计和施工的需要,可提供必要的后续服务,包括必要可行的补充检测等,并以补充报告的形式提交。
钢结构房屋在检测焊缝连接质量时可使用渗透探伤检测
渗透检测应按照预处理、施加渗透剂、去除多余渗透剂、干燥、施加显像剂、观察与记录、后处理等步骤进行。
4.6.2.2 预处理应符合下列规定:
1.对检测面上的铁锈、氧化皮、焊接飞溅物、油污以及涂料进行清理。应清理从检测部位边缘向外扩展30mm的范围;机加工检测面的的表面粗糙度(Ra)不宜大于12。5μm,非机械加工面的粗糙度不得影响检测结果;
2.对清理完毕的检测面应进行清洗;检测面应充分干燥后,方可施加渗透剂。
4.6.2.3 施加渗透集时,可采用喷涂、刷涂等方法,使被检测部位完全被渗透集所覆盖。在环境及工件温度为10-50℃的条件下,保持湿润状态不少于10min.。
4.6.2.4 去除多余渗透集时,可先用无绒洁净布进行擦拭。在擦除检测面上大部分多余的渗透剂后,再用蘸有清洗剂的纸巾或布在检测面上朝一个方向擦洗,直至见检测面上残留渗透剂全部擦净。
4.6.2.5 清洗处理后的检测面,经自然干燥或用布、纸擦干或用压缩空气吹干。干燥时间宜控制在5min~10min之间。
4.6.2.6 宜使用喷罐型的快干湿式显像剂进行显像。使用前应充分摇动,喷嘴宜控制在距检测面300mm—400mm处进行喷涂,喷涂方向宜与被检测面成30°~40°的夹角,喷涂应薄而均匀,不应在同一处多次喷涂,不得将湿式显像剂倾倒至被检测面上。
混凝土三种检测方法及优缺点
一.钻芯法检测
钻芯法是指通过从结构或构件中钻取圆柱状试件检测材料强度的方法。由于钻芯法对结构混凝土造成局部损伤,因此,是一种半破损的现场检测手段。构件龄期不少于14天、强度不低于10MPa的混凝土都可采用钻芯法检测其强度。
优点:钻芯法检测混凝土的强度、裂缝、接缝、分层、孔洞或离析等缺陷,具有直观、精度高等特点。
缺点:钻芯时会对结构局部造成损伤,钻芯后的孔洞需要修补以及检测仪器笨重,移动不够方便等。
二.回弹检测法
回弹法是一种间接检测混凝土抗压强度的方法。通过回弹仪测定混凝土表面硬度,再结合混凝土的碳化深度继而推断其抗压强度。回弹仪测定的回弹值是混凝土表面的硬度,材料的硬度又跟材料的强度有关,从而建立回弹值跟强度的测强曲线来推断强度值。
优点:回弹法是非破损技术检测混凝土抗压强度的一种常用的方法,具有准确、可靠、快速、经济等一系列的优点。
缺点:当混凝土表面与内部质量有明显差异,如遭受化学腐蚀或火灾,硬化期间遭受冻伤等,则不能用此方法。
三.超声回弹检测法
超声回弹法是根据实测声速值和回弹值综合推定混凝土强度的方法。超声回弹综合法采用带波形显示器的低频超声检测仪,并配置频率为50~100kHz的换能器,测量混凝体中的超声波声速值,
以及采用弹击锤冲击能量为2.207J的混凝土回弹仪,计量回弹值。利用已建立起来的测强公式推算该区域混凝土强度。
优点:能够减少龄期和含水率的影响,弥补相互不足,提高测试精度。由于综合法能较少一些因素的影响程度,较反映整体混凝土质量,所以对提高无损检测混凝土强度精度,具有明显的效果。
缺点:不适用于检测因冻害、化学侵蚀、水灾、高温等已造成表面疏松、剥落的混凝土。
该地块南侧为某小区15号、16号、17号和18号楼,某小区15号楼距离基坑距离约为13.7m,某小区16号楼距离基坑距离约为13.5m,某小区17号楼距离基坑距离约为14.0m,某小区18号楼距离基坑距离约为16.4m,均在3倍基坑开挖深度范围内。
某小区15号、17号和18号楼均为5层砖混结构房屋,均建造于2003年,平面呈矩形,东西方向宽12.74m,南北方向长43.44m,房屋室内外高差为0.6m,房屋室外地坪至檐口高度为14.1m。每幢房屋建筑面积为2670m2。建筑面积,10680m2。
房屋开间主要为3.6m,进深主要为4.7m,并设有架空层。房屋主要承重墙体采用烧结普通砖和混合砂浆砌筑,墙厚度为240mm。除架空层楼板为预制板外,其他楼板和屋面板均为现浇板。房屋屋面为坡屋面。经了解该批房屋基础形式均为预制桩+梁式基础,预制桩采用250mm×250mm×20000mm钢筋混凝预制方桩。
某小区16号楼为5层砖混结构房屋,建造于2003年,平面呈矩形,东西方向宽12.74m,南北方向长43.44m,房屋室内外高差为0.6m,房屋室外地坪至檐口高度为14.1m。房屋建筑面积为2670m2。房屋开间主要为3.6m,进深主要为4.7m,并设有架空层。房屋主要承重墙体采用烧结普通砖和混合砂浆砌筑,墙厚度为240mm。除架空层楼板为预制板外,其他楼板和屋面板均为现浇板。房屋屋面为坡屋面。经了解该房屋基础形式均为预制桩+梁式基础,预制桩采用250mm×250mm×20000mm钢筋混凝预制方桩。
本工程直接测定建筑物的倾斜主要采用全站仪投点法,作业方法说明如下:
全站仪投点法采用测角精度1",在两个基本垂直的方向上进行投点作业。分别测出两个方向上的偏移量,然后用矢量相加的方法即可得到整个建筑物的偏移值。
如图所示,ABCD为一建(构)筑物底部,A’B’C’D’为其顶部,为了观测AA’的倾斜,在A’处设置明显标志,并测定其高度h,分别在BA、DA的延长线上距A点1.5h~2h的地方设置测站M、N。
同时在测站M、N安置经纬仪,用正倒镜取中法将A’投影到地面得A”,量取倾斜量K,并在两个互为垂直的方向上分别量取Δx,Δy。于是倾斜方向:
α=arctgi=
近日,公司接到很多来自江苏某农村的业务咨询电话,都是关于房屋危房鉴定,他们的房子目前的情况都是渗水发霉严重,墙体开裂,粉刷层粉化严重。想咨询下是否能评定为危房,评为危房以后经有关部门批准房屋就可以拆了重建。
小编在这里就给大家科普下,什么是危房鉴定?危房鉴定的标准又是什么呢?
混凝土裂缝产生的原因
1、塑性收缩裂缝
塑性裂缝多在新浇注的混凝土构件暴露于空气中的上表面出现,塑性收缩是指混凝士在凝结之前,表面因失水较快而产生的收缩塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不-,互不连贯状态,较短的裂缝一般长20~30cm较长的裂缝可达2~3m,宽1~5mm。
塑性裂缝产生的主要原因为:混凝土在终凝前几乎没有强度或强度很小,或者混凝土网刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,
造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。影响混凝土塑性收缩开裂的主要因素有水灰比、混凝土的凝结时间,环境温度、风速、相对湿度等等。
2、沉降收缩裂缝
沉陷裂缝的产生是由于结构地基土质不匀松软或回填士不实或浸水而造成不均匀沉降所致,或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致,特别是在冬季,
模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。此类裂缝多为深进或贯穿性裂缝,裂缝呈梭形其走向与沉陷情况有关,一般沿与地面垂直或呈30~45度角方向发展,
较大的沉陷裂缝,往往有一定的错位,裂缝宽度往往与沉降量成正比关系。裂缝宽度0.3~0.4mm,受温度变化的影响较小。地基变形稳定之后,沉陷裂缝也基本趋于稳定。
3、温度裂缝
温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝士浇筑后,在硬化过程中,水泥水化产生大量的水化热,(当水泥用量在350-550kg/m3,
每立方米混凝土将释放出17500-27500kJ的热量,从而使混凝士内部温度升达70C左右甚至更高)。由于混凝士的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,
而混凝土表面散热较快,这样就形成内外的较大温差,较大的温差造成内部与外部热胀冷缩的程度不同,使混凝士