BURKERT流量计主要由起旋器、文丘里管、消旋器和检测传感器组成,其结构原理如图1. BURKERT流量计是基于旋涡进动现象工作的[12].流体流入旋进旋涡流量计后,首先通过一组由固定螺旋形叶片组成的起旋器后被强制旋转,使流体形成旋涡流.旋涡中心为“涡核”是流体旋转运动速度很高的区域,其外围是环流.流体流经收缩段时旋涡加速,沿流动方向涡核直径逐渐缩小,而强度逐渐加强.此时涡核与流量计的轴线相一致.当进入扩大段后,旋涡急剧减速,压力上升,中心区域的压力比周围的压力低,于是产生了局部回流.在回流作用下,涡核偏离中心轴像刚体一样在扩张段壁面做螺旋进动,并且是围绕中心轴进行的.进动频率与流体的流速成正比.因此,测得旋进旋涡的频率即能反映流速和体积流量的大小. 1.2 结构优化方案 BURKERT流量计压损大、小流量信号弱等问题,提出了结构改进和参数优化研究方案.改进对象为一个DN50气体旋进旋涡流量计,其内部结构和寸见图2.流量计长度为232 mm,入口管径50 mm,收缩段长度94.2 mm,发展段管径为36 mm、长度为35.8 mm,扩张段长为12 mm,扩张角度为60°.具体改进和参数优化研究如下: 1)起旋器入口加装导流叶片段.原有起旋器叶片在入口段没有导流部分(图1),叶片与来流之间夹角为60°,来流不是切向进入,会造成严重的流动分离.流动分离使得流动扰动和流动阻力增大.因此,改进方案中考虑把原来起旋器叶片延长并作弯曲使得入口与来流夹角为0°,即流动切向进入,以期改善流动状态. 2)起旋器叶片数量增加.起旋器原来的叶片数量是6片,考虑增加1片(图3b),同时为了保证流动面积不减小,将叶片厚度由2.5 mm变为1.5 mm(当前加工能力能够做到).螺旋角度保持不变,仍为30
BURKERT流量计流量零点修正的流向选择
4?宝德流量计的选型、安装及使用情况
4.1?宝德流量计的选型原则
(1)考虑口径与量程,电磁流量计的量程虽然是任意设定的,但其设定的范围受口径的限制。量程的设定要考虑正常流量过满量程的一半,这样的测量精度才高。流速一般选择2~ 4 m/s,如介质易磨损电极,可选择稍低的流速;如介质较易粘附,可选择适当稍高的流速。综合考虑后根据流率表选择仪表的口径。
(2)考虑介质的压力、温度及腐蚀性,依此选择不同的内衬和电极材料。
4.2?的具体选择与安装
由于被测介质是温度低于100的淡碱和浓碱,对不锈钢电极的腐蚀很微弱,但对各种橡胶类内衬有腐蚀作用,因而我们选用聚四氟乙烯内衬。考虑到以后再扩产,我们将口径选为150 mm。我公司具体所选用的电磁流量计规格型号为:K300-(150)
宝德流量计体原理框用见图3—2所示.
2.涡轮流量计的构造
宝德流量计流体从机壳的进口流入.通过支架将一对袖承固定在管中心轴线上,涡轮安装在轴承上.在涡轮上下游的支架上装有呈辐射形的整流板,以对流体起导向作用,以避免流体自旋而改变对涡轮叶片的作用角度.在涡轮上方机壳外部装有传感线圈,接收磁通变化信号.
下面介绍主要部件.
(1)涡轮
宝德流量计涡轮由导磁不锈钢材料制成,装有螺旋状叶片.叶片数量根据直径变化而不同,2-24片不等.为了使涡轮对流速有很好的响应,要求质量尽可能小.
对涡轮叶片结构参数的一般要求为:叶片倾角10°-15°(气体),30°-45°(液体);叶片重叠度P为1—1.2;叶片与内壳间的间隙为0.5—1mm.
(2)轴承
涡轮的轴承一般采用滑动配合的硬质合金轴承,要求耐磨好.
由于流体通过涡轮时会对涡轮产生一个轴向推力,使铀承的摩擦转矩增大,加速铀承磨损,为了消除轴向力,需在结构上采取水力平衡措施,这方法的原理见图3—3所示.由于涡轮处直径DH略小于前后支架处直径Ds,所以,在涡轮段流通截而扩大,流速降低,使流体静压上升 P,这个 P的静压将起到抵消部分轴向推力的作用.
(3)前置放大器
宝德流量计由磁电感应转换器与放大整形电路两部分组成,示意图见图3—4所示
注:1.BURKERT流量计使用“复合键”时,应先按下复合键再同时按住上“上键”或“下键”
2.BURKERT流量计在参数设置状态下,3分钟内没有按键操作,仪表自动返回测量状态。
3.BURKERT流量计流量零点修正的流向选择,可将光标移至左面的“+”或“—”用“上键”或“下键”切换使之与实际流向相反。
4.BURKERT流量计流量的单位选择,可将光标移至“流量量程设置”菜单的原显示的流量单位下,然后用“上键”或“下键”切换使之符合需要。
BURKERT流量计流量零点修正的流向选择