杭州码头风荷载监测诊断报告

发布时间:2021-01-19

 杭州码头风荷载监测诊断报告

承接所有地区检测鉴定业务/诚招城市合伙人

结构健康监测--施工过程位移监测(GPS部分): 位移监测的目的在于掌握塔楼结构的几何变化,研究塔楼的水平位移与环境变化(如温度和风)的关系。结构水平位移特别是顶部的水平位移对结构的稳定性起着至关重要的作用,影响结构的安全。所以施工过程中水平位移监测是一个重要环节,应确保结构的水平位移在规范要求的范围内。 根据《高层建筑混凝土结构技术规程(JGJ3—2010)》,高度大于250米的高层混合筒体建筑,按弹性方法计算的楼层层间*位移与层高之比不宜大于1/500。 对加速度信号积分,可以得到结构的动位移。至于如何得到结构的*位移(包括静位移、动位移和不均匀沉降),采用普通的监测手段将遇到选择参照物的困难。当前发展起来的全球定位系统(GPS)可以很好地解决该问题。 GPS的基本定位原理是:卫星不间断地发送自身的星历参数和时间信息,用户接收到这些信息后,经过计算求出接收机的三维位置、三维方向和时间信息。GPS技术具有精度高、速度快、全天候、连续、同步、全自动,且能同时获得3维坐标等优点。在本项目中,将采用全球定位系统来测量结构在风作用下的位移 。杭州码头风荷载监测诊断报告

通际质量检测是一家*的检验检测第三方实验室,在江苏、浙江、山东、湖北都设有办事处。通际检测拥有有资质工业检验的*团队,可以进行钢结构等工业现场检验。而货架的本质也是钢结构,检测中心应企业对于货架安全检测的需求,开展了此项服务。通际检测是华东区开展货架检验的较早的第三方检验检测公司。业务开展以来,为很多企业执行了货架检测,比如金龙鱼、嘉里粮油、光明乳业、达能、虎头电池、中外运等等 。

杭州码头风荷载监测诊断报告

本项目采用1+2型GPS 监测方案,即一个固定站(基站)和二个移动站。当结构施工到相应监测楼层时,在结构刚度中心及角部各布置两个移动站,用来测试结构的整体水平位移。由于结构的运动除了两个方向的水平平动外还可能有绕中心的扭转,根据两个测点的测试结果可以计算出结构的扭转相应。 固定站的安装标准要求很高,需要选择距离移动站600m之内一个开阔场地采用挖坑深埋方式布设固定站,作为移动站的差分参考。如果工地现场的条件不够,可以考虑直接采用当地政府的大地监测网络基准站,通常他们具有更高的安装精度,一般数据的获得需要付费。 移动站安装在结构上之后,结构一直在振动,因此,移动站的零点选择也是比较困难的。零点的可以采用如下步骤实现:振动位移可以通过加速度计和激光位移计,通过振动台给出不同频率和振幅的振动,然后由测到的GPS振动位移与加速度计和激光位移计测到的振动位移相比,从而验证GPS测定振动位移的精度。用同样的方法,通过激光位移计测到的平动位移(平均位移)验证GPS的平均位移精度。 由于本结构高,建筑地面的 GPS 参考站信号会被周围建筑阻挡;因此本项目拟在塔楼开阔场地不动点处布置1个GPS参考站,其与2个GPS流动站组成一个完备的GPS 观测环路,以提高GPS观测的可靠性,GPS在平面的布置点如图 6.5?4。当结构施工到相应监测楼层时,在所监测楼面中心处和外筒各布置一台GPS观测站监测结构的水平方向位移。结构的测试楼层主要为10个加强层。由于结构的运动除了两个水平方向平动外还可能有绕中心的扭转,根据中心点和外筒测量得到的运动可以计算出结构的扭转。

浙江桥梁结构加速度监测周期时间 结构健康监测--结构及构件状态监测 1.1 标高监测。 在施工阶段,应采用适当的补偿技术修正建筑的初始楼面标高,使得*终的楼面标高与设计标高相一致,楼面标高补偿技术采用预测的方式进行。一方面,通过考虑材料时变效应的分析技术预测包括收缩徐变和基础沉降的长期变形量,以及结构竖向恒载引起的变形量,并在施工阶段楼面标高预留80%的长期变形量作为标高补偿;另一方面,通过对楼层施工时的楼面标高的监测,可以获得当前楼面标高的实际值。 1.2 垂直度监测。 为准确了解和控制塔楼的垂直度,应对施工各阶段塔楼的倾斜度进行监测;且在布设垂直度监测网络时,应保证基准点的稳定性,并选择代表性的塔楼倾斜度监测点。 1.3 沉降监测。 为准确了解和控制塔楼的沉降,各阶段应对塔楼的沉降进行监测 。

本项目采用1+2型GPS 监测方案,即一个固定站(基站)和二个移动站。当结构施工到相应监测楼层时,在结构刚度中心及角部各布置两个移动站,用来测试结构的整体水平位移。由于结构的运动除了两个方向的水平平动外还可能有绕中心的扭转,根据两个测点的测试结果可以计算出结构的扭转相应。 固定站的安装标准要求很高,需要选择距离移动站600m之内一个开阔场地采用挖坑深埋方式布设固定站,作为移动站的差分参考。如果工地现场的条件不够,可以考虑直接采用当地政府的大地监测网络基准站,通常他们具有更高的安装精度,一般数据的获得需要付费。 移动站安装在结构上之后,结构一直在振动,因此,移动站的零点选择也是比较困难的。零点的可以采用如下步骤实现:振动位移可以通过加速度计和激光位移计,通过振动台给出不同频率和振幅的振动,然后由测到的GPS振动位移与加速度计和激光位移计测到的振动位移相比,从而验证GPS测定振动位移的精度。用同样的方法,通过激光位移计测到的平动位移(平均位移)验证GPS的平均位移精度。 由于本结构高,建筑地面的 GPS 参考站信号会被周围建筑阻挡;因此本项目拟在塔楼开阔场地不动点处布置1个GPS参考站,其与2个GPS流动站组成一个完备的GPS 观测环路,以提高GPS观测的可靠性,GPS在平面的布置点如图 6.5?4。当结构施工到相应监测楼层时,在所监测楼面中心处和外筒各布置一台GPS观测站监测结构的水平方向位移。结构的测试楼层主要为10个加强层。由于结构的运动除了两个水平方向平动外还可能有绕中心的扭转,根据中心点和外筒测量得到的运动可以计算出结构的扭转。

杭州码头风荷载监测诊断报告

结构健康监测--施工过程风速监测: 为了获得结构在风作用下响应的关键输入作用,进行风速的观测是至关重要的。施工阶段的风速监测不仅可以获得关键大风天气的风荷载的输入,也可以为结构性状的了解与结构响应的分析提供重要的参数。 由于风速是一个复杂的随机过程,对于风速的观测一般需要了解三个方向的风速输入,因此针对风速的监测拟采用三维超声风向风速仪和机械风向风速仪。施工阶段由于结构高度在不断变化之中,因此测点的位置也随之不断变化。在有大风来临时,将测点布置在结构*点。 在施工阶段,为了保证测试数据的度,两种类型的风速仪将考虑安装在施工塔吊的顶部,获取大风条件下主塔楼所在位置的风速、风向、湍流度、阵风因子、湍流积分尺度、湍流功率谱等边界层特性。 大风的监测与其他类型的监测不同,只有大风来临时对风进行实时监测才具有实际意义。因此对于施工阶段的风速监测采取有大风气候时进行观测,并初步以7m/s为风速监测的控制风速标准。 施工期间风速仪采用临时太阳能电池或蓄电池供电,采用相应数据采集设备进行数据的动态采集。风速仪有两种信号输出方式,一种为直接电压输出,另一种为直接输出RS-485数字信号;由于前者需要外部激励电源,因此,本方案采用RS-485 总线传输方式,因这种传输方式*远传输距离可达1200m。因此确定风速仪的设置位置距离数据采集设备的距离不宜过1200m。 设备的安装采用临时风速安装支架,固定在施工*位置处。需要在施工位置*位置处设置预埋件以固定风速安装支架 。Kbdc2ql88

国际上,尤其是日本、美国和徳国,健康监测系統在土木工程中用相対较多,已经扩展到大型混凝土工程、高层建筑等复杂系统的监测。纵观土木工程结构安全性评估、健康监测及诊断的发展水平,至少有以下几个尚待解決的问题: (1)缺少通用的损伤量化指标:在基于振动的故障诊断和预测中,要求不论信号的来源和频段,经过信号处理后,原始状态的信号(健康状态)和损伤后的信号(损伤状态)应有明显的差异。即识别出的信号特征能够准确地表示出健康状态和损伤状态。因此,应该设计一种损损尺度,将结构损伤与否和损伤的程度简单地分级量化; (2)高成本和信号处理的不准确性:诊断系统的两个主要问题是:高成本和信号处理的不准确性。*个问题随着元线网络和通讯的发展已不那么突出,第二个问是现在都假定璪音信号为不变的高斯分布而感兴趣的信号都有确定的频率,实际上并非如此,感兴趣的信号频率范围很宽,而且是在一个非理想的变化环境中得到的,如何解决这个问题将成为未来发展的重点。 结构健康监测系统涉及许多不同研究领域(如结构、计算机、通讯等),需要解決多方面的问题(如寻找传器感*测点、*的模态识别方法、*的系统识别方法、误差分析等),健康监测主要目的是监测累积损伤-自动识别损伤是结构健康监测系统的核心技术,也是当代国际的研究热点。目前的健康监测系统尚不具备损伤识别能力,而真正的健康监测系统必须具备自识别损伤的能力。桥梁监测系统涉及结构、计算机、通讯等多个领域,需要多学科的研究。世界上许多新建的大跨桥都安装有监测系统,桥梁监测系統反映了一个*的结构试验技术和桥梁管理的综合实力,是国际上的前沿热点研究领域,目前正迅速发展。健康诊断作为土木基础设施系统管理的一部分,越来越受到人们的重视 。

结构健康监测--荷载及作用监测: 1.1地震作用监测。 通过在塔楼设置两台强震仪获得塔楼的平动地震动输入,以进行地震作用监测。一台强震仪放置于塔楼基础大底板的中央,一台强震仪放置在主体结构顶层的中心,用于自动记录地震在基础以及塔楼顶部的三个分量上的振动。第三台强震仪可放在周边的自由场上。 如果该地区自由场上已布置强震仪,且可以根据需求提取得到数据,可以考虑共用自由场的强震仪,这样可以合理利用资源。地震作用监测应与结构的地震响应监测相结合,以建立起有效的荷载-响应关系,以及地震作用后结构的损伤识别及健康性态评估。 1.2 风荷载监测。 布置风速监测传感器获得塔楼顶部不同方向的来流风速和风向数据。至少共配备2台风速仪(一台机械式,一台超声式)进行风速的监测。在建筑立面,应考虑沿建筑高度方向均匀设置适当数量的风压测量装置。风荷载监测应与结构的风致响应监测相结合,以建立起有效的荷载-响应关系,实现施工过程的结构应有姿态判别、强风灾害的预警,以及风荷载作用下结构的损伤识别及性态评估。 1.3 温度监测。 观测塔楼环境的温度变化,包括日温度变化和季节温度变化。沿建筑物立面高度设置5个测量区,用以测量不同建筑高度的温度分布与变化;并且测点沿建筑的平面四周布置,用以测量不同建筑立面情况下的温度分布与变化 。

杭州桥梁构件应力应变监测单位名录:http://www.testmart.cn/Home/News/data_detail/id/711910739.html

上一篇:日本SMC传感器工作原理是什么
下一篇:尿素塔拆除欢迎您