徐州桥梁构件应力应变监测诊断报告
承接所有地区检测鉴定业务/诚招城市合伙人
桥梁结构健康监测的现状与发展方向:目前我国桥梁养护单位由于经济条件的制约,桥梁结构健康监测开展并不普遍,仅在徐浦大桥、南京长江第二大桥、润扬大桥等有一定影响的特大桥中采用,并且普遍存在着监测项目种类不足的情况。在监测数据的管理方面,没有一个较为完善的数据存储与管理系统,大量的监测数据得不到妥善的处理与利用。并且,现有的桥梁结构监测和状态评估系统大多属于单一的监测系统或者是单一的管理系统。随着经济的发展和管理部门对结构安全监测认识的进一步提高,桥梁健康监测技术将越来越趋向于普遍化、智能化、实时化、网络化。 普遍化,随着国内大型桥梁的不断建成,管理者对做好桥梁的运营、养护,随时了解桥梁结构的健康状况,及时对桥梁进行安全评价的要求日益迫切,并给与高度重视和经济支撑,使桥梁健康监测系统得以广泛应用。 智能化,通过开发和应用高性能智能传感设备,达到进行自感知、自适应、自诊断、自愈合和智能传输测试的目的。 实时化,能及时掌握桥梁工作状态,消除人工检测的滞后性和低效性。能准确判别桥梁安全性能、使用性能和资金使用效率之间的*化临界点,避免重大事故的出现和资源的浪费。 网络化,桥梁实时监测系统的网络化可以实现监测数据的共享,以便各地*对桥梁状态的评估,更可实现对远离城市桥梁的自动实时监测,实现良好的社会效益和经济效益 。徐州桥梁构件应力应变监测诊断报告
通际质量检测是*从事房屋检测、结构监测、工程检测和评估鉴定的第三方检测机构,具有资质认可的CMA、CNAS等相关证书,拥有以博士、硕士领衔的*检测技术团队。公司下设房屋质量检测站、结构监测中心、工程检测部和评估鉴定部等部门,30+位工程师为你量身打造的检测方案,帮你节省近20%的检测费用 。
通际检测【业务范围】:房屋检测、厂房检测、幕墙检测、抗震鉴定、烟囱检测、广告牌检测、钢结构检测、货架检测、舞台检测、隧道桥梁检测、港口码头检测、焊接工艺评定、产品失效分析、热像检测、建筑物振动检测、地下管网检测鉴定、工业设备可靠性鉴定 。
目前我国土木工程事故频繁发生,如桥梁的突然折断、房屋骤然倒塌等,地震、洪水、暴风等自然灾害也对建筑物和结构造成不同程度的损伤;在Northridge和1995年日本神户(Kobe)的大地震中,一些建筑物在遭受主震后并未立即倒塌,但结构却已受到严重损伤而未能及时发现,在后来的余震中倒塌了。还有一些人为的爆炸等破坏性行为,如美国世贸大褛倒塌对周围建筑物的影响,这些都造成了重大的人员伤亡和财产损失,而且已经引起人对于重大工程安全性的关心和重视、对结构性能进行监测和诊断,及时地发现结构的抗伤,对可能出现的灾害进行预测,评估其安全性已经成为未来工程的必然要求,也是木工程学科发展的一个重要领域。 健康监测系统及其组成:一般认为健康监测系统应包括下列几部分: 传感器系统,包括感知元件的选择和传感器网络在结构中的布置方案。 数据采集和分析系统,一般由强大的计算机系统组成。 监控中心,能够及时预测结构的异常行为。 实现诊断功能的各种软硬件,包括结构中损伤位置、程度类型识的*判据。 传愿器监测的实时信号通过信号采集装置送到监控中心,进行处理和判断,从而对结构的健康状态行评估,若出现异常,由监控中心发出预警信号,并由故障诊断模块分析查明异常原因,以便系统安全可地运行 。徐州桥梁构件应力应变监测诊断报告 倾斜仪通常用于测量结构主要竖向承重构件(核心筒、剪力墙等与结构整体变形相一致的构件)竖向的倾角变化。它的主要优点不仅可以计算获得结构顶端水平位移,还能获得高层结构中心线沿竖直方向的倾角变化。主要用于结构在强风强震下的各楼层层间位移的实时监测,其结果可以清晰、快速有效地反应结构的主体性能。 在施工阶段,特别是结构处于较低高度(小于200米)时,结构水平位移相对较小,结构外围幕墙体系尚未完全建立,其结构性状与使用期间结构性状不同。因此监测的要求和目标也不同。由于施工中施工设备、施工机具、施工工艺等的不同,以及条件限制,一般情况下不进行水平位移的实时监测。当结构,特别是混凝土核心筒上升到200米以上,在大风期间应进行核心筒的水平位移实时监测,以获得塔楼的相关数据,为核心筒中塔吊的正常工作以及相关高空作业积累经验和数据,同时为不同高度、不同风荷载下正常施工、高空正常作业积累经验和数据。 在已建的子站的核心筒中心的剪力墙上合理设置倾斜仪,一般一个测区布置X向和Y向两台倾斜仪,分别布置在两道剪力墙上,通过数据采集、传输与处理技术相结合,形成倾角仪-数据采集系统-数据处理系统-终端输出系统,实现高层建筑结构在强风强震下的侧向位移的动态监测 。
桥梁结构健康监测的现状与发展方向:目前我国桥梁养护单位由于经济条件的制约,桥梁结构健康监测开展并不普遍,仅在徐浦大桥、南京长江第二大桥、润扬大桥等有一定影响的特大桥中采用,并且普遍存在着监测项目种类不足的情况。在监测数据的管理方面,没有一个较为完善的数据存储与管理系统,大量的监测数据得不到妥善的处理与利用。并且,现有的桥梁结构监测和状态评估系统大多属于单一的监测系统或者是单一的管理系统。随着经济的发展和管理部门对结构安全监测认识的进一步提高,桥梁健康监测技术将越来越趋向于普遍化、智能化、实时化、网络化。 普遍化,随着国内大型桥梁的不断建成,管理者对做好桥梁的运营、养护,随时了解桥梁结构的健康状况,及时对桥梁进行安全评价的要求日益迫切,并给与高度重视和经济支撑,使桥梁健康监测系统得以广泛应用。 智能化,通过开发和应用高性能智能传感设备,达到进行自感知、自适应、自诊断、自愈合和智能传输测试的目的。 实时化,能及时掌握桥梁工作状态,消除人工检测的滞后性和低效性。能准确判别桥梁安全性能、使用性能和资金使用效率之间的*化临界点,避免重大事故的出现和资源的浪费。 网络化,桥梁实时监测系统的网络化可以实现监测数据的共享,以便各地*对桥梁状态的评估,更可实现对远离城市桥梁的自动实时监测,实现良好的社会效益和经济效益 。
在施工阶段,位移监测楼层施工完成时需对变形进行测量。在进行加强层施工时,变形数据观测间隔不应少于5天。结构封顶至所有上部荷载施加完毕,变形观测间隔不应少于1个月。 施工期间基本原则是不布线或尽量少布线。测试时根据需要采用独立监测系统,数据线直接接入测点旁的电脑中。一层测区一台电脑,一个楼层若有多个测点,可根据情况确定一台或多台电脑,数据线不跨越楼层。若采用监测系统,加速度仪设在子站所在楼层,布线通过数据线槽一并接入子站,然后统一传递到站。 GPS接收机和GPS参考站安装在安全和有保护装置的位置并进行避雷保护。GPS天线的位置应当仔细选择,避免由于电缆、障碍物等引起多路径影响。施工阶段,由于施工平台可能会屏蔽GPS信号,因此需对GPS流动站加装信号接收天线放大器,以保证接收数据的可靠性和准确性。GPS天线与数据采集系统之间是波特率为115200的光缆来进行传输。施工期间基本原则是不布线或尽量少布线。测试时根据需要采用独立监测系统,光缆直接接入测点旁的电脑中 。Kbdc2ql88
结构健康监测- 结构模态分析: 结构动力特性不仅与结构当前的工作状态有着密切的直接联系,而且也是进行结构模型修正的重要参考因素。结构自振频率、振型和阻尼比可以针对动力响应实测数据(加速度、速度以及位移传感器实测得到的振动信号)进行频谱分析获得。由于传感器测试的数据往往包含了周边环境噪声的成分,同时结构属于频率密集型结构,在此背景下,直接针对动力响应实测数据进行频谱分析,确保由此方法获得的结构模态特征参数的准确性就显得比较困难。 为此,除了采用FFT变换和功率谱法分析结构的频谱特性之外,还采用小波变换和Hilbert-Huang变换来分析结构的时频特征,小波变换和Hilbert-Huang变换可以从结构的振动信号中分离出较密集的结构自振频率。此外,由于噪声的影响,使每一次测试得到的结构频率和振型均存在一定的差别,为此,我们采用统计分析的方法确定结构的频率和振型的概率分布。 另外,由于安装过程在结构内部引起的自平衡的初始安装应力,温度变化在静定结构内部引起的温度应力等都会导致结构动力特性的变化。考虑初始安装应力的实际影响,通过施工过程的跟踪监测可以获知竣工结构内部的安装应力分布特征及规律,在此基础上基于动力响应实测数据的结构模态分析结果很可能与结构理论计算得到的结果不一致,由此进行的有限元模型修正可以保证计算模型能更真实的反映结构的实际工作状态。考虑温度变化的实际影响,在不同温度场下测试分析获得结构的自振频率,找到温度对结构频率影响的规律,从而在对有限元模型进行修正时,剔除温度的影响 。
结构健康监测--结构响应监测 1.1 位移监测。 结构位移监测拟在塔楼主体结构的中心布置二个全球定位系统(GPS)。用于监测主体结构在风荷载以及可能产生的地震作用下的水平位移*值。沿塔楼高度方向,在关键楼层处布置倾角仪,用于监测房屋中心点处的水平位移,因此应布置在核心筒连续的竖向墙体上。同时结合加速度仪的布置,可以得到结构整体的实时响应,实时掌握结构的整体性状。 1.2 加速度监测。 结构动力特性是反映结构性状的一个*重要、*直接的性能指标。在关键楼层布置加速度仪不仅可以获得结构的自振周期、频率以及阻尼,而且可以实时记录结构在风荷载、地震荷载作用下结构的反应。对于高层建筑,前5阶反应及前15阶模态是*为重要的。因此,动力响应传感器数量及布置应能获取使用阶段状态下结构的前五阶X向平动、Y向平动和前三阶扭转,不少于15阶模态的周期、振型和阻尼比。 1.3 应力应变监测。 测量塔楼关键构件的应变,关键构件包括: 1) 伸臂桁架和环带桁架的关键部位的上弦、下弦和斜腹杆; 2) 典型层巨柱的钢骨、钢筋和混凝土,交叉斜撑与巨柱相连的应力复杂部位; 3) 典型层核心筒的角部暗柱、核心筒内埋钢板和混凝土的关键部位; 4) 典型层的角部暗柱钢骨、墙身钢筋和混凝土; 5) 巨柱间的交叉斜撑; 6) 特殊楼层的水平桁架、梁; 7) 穹拱及塔冠钢结构 。
无锡建筑地震作用监测诊断报告:http://www.testmart.cn/Home/News/data_detail/id/711992782.html