宣城码头构件应力应变监测公司-联系我们
承接所有地区检测鉴定业务/诚招城市合伙人
结构健康监测--施工过程温度、湿度及气压监测: 对于高建筑结构,由于日照变化、季节变化、空调因素等将可能使某些构件产生很大的温度应力,为了准确的把握结构构件的温度变化以及由此产生的结构内力效应,需要在构件上布置温度传感器观测塔楼环境的温度变化,包括日温度变化和季节温度变化。温度计的设置及数量应能够反映塔楼高度方向和塔楼周边的温度主要分布情况。 1.1 测点布置。 温湿压一体变送器需要按照考虑季节温差、日照温差、应变补偿等原则进行布设。拟采取测点布置原则如下: 1) 沿建筑物立面高度第14、36、56、87、118层设置温度、湿度及气压测量区。共计5个测量层,用以测量不同建筑高度的温度变化。 2) 建筑物各立面分别设置温度、湿度及气压测量点,用以测量不同日照情况下的温度、湿度及气压变化。巨柱的室内与室外表面分别各布置一个温度、湿度及气压测点,用于测量巨柱的温度变化。核心筒中部布置一个温度、湿度及气压测点,用于测量核心筒的温度、湿度及气压变化。 3) 综上,共需布置温度、湿度及气压测量点104个。 1.2 监测时间和监测频率。 某温度、湿度及气压测量层施工完毕后,即开始针对该层温度、湿度及气压测点进行不间断的温度、湿度及气压测量,测量频率定为5天/次。 1.3 监测系统布置. 温度、湿度及气压测量系统为传感器—子站—站的数据传输形式。共设置5个温度测量层,分别为第14层、第36层,第56层,第87层以及第118层。温、湿度及气压传感器的信号类型为直接电压输出,其有效传输距离可达1000m,因此,可以直接接入数据采集卡。其信号传输介质为普通单芯屏蔽电缆 。宣城码头构件应力应变监测公司-联系我们
通际质量检测(上海)有限公司是*从事房屋检测、结构监测、工程检测和评估鉴定的第三方检测机构,具有*认可的CMA、CNAS等相关证书,拥有以博士、硕士领衔的*检测技术团队。公司下设房屋质量检测站、结构监测中心、工程检测部和评估鉴定部等部门,由*一级注册结构师、注册岩土工程师、教授级高级工程师等30+位工程师为你量身打造的检测方案,帮你节省近20%的检测费用,加快可以3-7天内出具相应的检测报告 。
通际质量检测(上海)有限公司是*从事房屋检测、结构监测、工程检测和评估鉴定的第三方检测机构,具有*认可的CMA、CNAS等相关证书,拥有以博士、硕士领衔的*检测技术团队。公司下设房屋质量检测站、结构监测中心、工程检测部和评估鉴定部等部门,由*一级注册结构师、注册岩土工程师、教授级高级工程师等30+位工程师为你量身打造的检测方案,帮你节省近20%的检测费用,加快可以3-7天内出具相应的检测报告 。
结构健康监测--施工过程温度、湿度及气压监测: 对于高建筑结构,由于日照变化、季节变化、空调因素等将可能使某些构件产生很大的温度应力,为了准确的把握结构构件的温度变化以及由此产生的结构内力效应,需要在构件上布置温度传感器观测塔楼环境的温度变化,包括日温度变化和季节温度变化。温度计的设置及数量应能够反映塔楼高度方向和塔楼周边的温度主要分布情况。 1.1 测点布置。 温湿压一体变送器需要按照考虑季节温差、日照温差、应变补偿等原则进行布设。拟采取测点布置原则如下: 1) 沿建筑物立面高度第14、36、56、87、118层设置温度、湿度及气压测量区。共计5个测量层,用以测量不同建筑高度的温度变化。 2) 建筑物各立面分别设置温度、湿度及气压测量点,用以测量不同日照情况下的温度、湿度及气压变化。巨柱的室内与室外表面分别各布置一个温度、湿度及气压测点,用于测量巨柱的温度变化。核心筒中部布置一个温度、湿度及气压测点,用于测量核心筒的温度、湿度及气压变化。 3) 综上,共需布置温度、湿度及气压测量点104个。 1.2 监测时间和监测频率。 某温度、湿度及气压测量层施工完毕后,即开始针对该层温度、湿度及气压测点进行不间断的温度、湿度及气压测量,测量频率定为5天/次。 1.3 监测系统布置. 温度、湿度及气压测量系统为传感器—子站—站的数据传输形式。共设置5个温度测量层,分别为第14层、第36层,第56层,第87层以及第118层。温、湿度及气压传感器的信号类型为直接电压输出,其有效传输距离可达1000m,因此,可以直接接入数据采集卡。其信号传输介质为普通单芯屏蔽电缆 。宣城码头构件应力应变监测公司-联系我们 结构健康监测--荷载及作用监测: 1.1地震作用监测。 通过在塔楼设置两台强震仪获得塔楼的平动地震动输入,以进行地震作用监测。一台强震仪放置于塔楼基础大底板的中央,一台强震仪放置在主体结构顶层的中心,用于自动记录地震在基础以及塔楼顶部的三个分量上的振动。第三台强震仪可放在周边的自由场上。 如果该地区自由场上已布置强震仪,且可以根据需求提取得到数据,可以考虑共用自由场的强震仪,这样可以合理利用资源。地震作用监测应与结构的地震响应监测相结合,以建立起有效的荷载-响应关系,以及地震作用后结构的损伤识别及健康性态评估。 1.2 风荷载监测。 布置风速监测传感器获得塔楼顶部不同方向的来流风速和风向数据。至少共配备2台风速仪(一台机械式,一台超声式)进行风速的监测。在建筑立面,应考虑沿建筑高度方向均匀设置适当数量的风压测量装置。风荷载监测应与结构的风致响应监测相结合,以建立起有效的荷载-响应关系,实现施工过程的结构应有姿态判别、强风灾害的预警,以及风荷载作用下结构的损伤识别及性态评估。 1.3 温度监测。 观测塔楼环境的温度变化,包括日温度变化和季节温度变化。沿建筑物立面高度设置5个测量区,用以测量不同建筑高度的温度分布与变化;并且测点沿建筑的平面四周布置,用以测量不同建筑立面情况下的温度分布与变化 。
本项目采用1+2型GPS 监测方案,即一个固定站(基站)和二个移动站。当结构施工到相应监测楼层时,在结构刚度中心及角部各布置两个移动站,用来测试结构的整体水平位移。由于结构的运动除了两个方向的水平平动外还可能有绕中心的扭转,根据两个测点的测试结果可以计算出结构的扭转相应。 固定站的安装标准要求很高,需要选择距离移动站600m之内一个开阔场地采用挖坑深埋方式布设固定站,作为移动站的差分参考。如果工地现场的条件不够,可以考虑直接采用当地政府的大地监测网络基准站,通常他们具有更高的安装精度,一般数据的获得需要付费。 移动站安装在结构上之后,结构一直在振动,因此,移动站的零点选择也是比较困难的。零点的可以采用如下步骤实现:振动位移可以通过加速度计和激光位移计,通过振动台给出不同频率和振幅的振动,然后由测到的GPS振动位移与加速度计和激光位移计测到的振动位移相比,从而验证GPS测定振动位移的精度。用同样的方法,通过激光位移计测到的平动位移(平均位移)验证GPS的平均位移精度。 由于本结构高,建筑地面的 GPS 参考站信号会被周围建筑阻挡;因此本项目拟在塔楼开阔场地不动点处布置1个GPS参考站,其与2个GPS流动站组成一个完备的GPS 观测环路,以提高GPS观测的可靠性,GPS在平面的布置点如图 6.5?4。当结构施工到相应监测楼层时,在所监测楼面中心处和外筒各布置一台GPS观测站监测结构的水平方向位移。结构的测试楼层主要为10个加强层。由于结构的运动除了两个水平方向平动外还可能有绕中心的扭转,根据中心点和外筒测量得到的运动可以计算出结构的扭转 。
结构健康监测--施工过程监测的内容: 1) 风荷载监测。 包括两部分内容,其一是指塔楼顶部在结构主体封顶至施工结束工程竣工阶段,针对建筑物所承受风荷载作用的监测。其二是指塔楼某部分在该部分施工结束至工程竣工期间内该部分建筑物在承受外部风荷载作用下的表面风压的监测。 2) 温度监测。 设置五个温度测量层,本项监测是指施工全周期内,测量层各测量点在该层施工完毕至工程竣工阶段,针对结构表面和结构体内温度变化的监测。 3) 位移监测。 是指建筑物各个关键位移控制点,包括塔体以及塔顶等,在该关键点施工完毕至全部结构竣工期间内,各施工阶段该关键点各向位移的监测。 此项监测采用两种方法分别进行: GPS以及倾角仪系统。各种方法的监测数据进行对比分析与融合。 4) 加速度监测。 主要是指结构在竣工投入使用后,各加速度监测点随在结构运营期间加速度响应的监测。动力响应传感器数量及布置应能获取使用阶段不同结构状态下结构的X向平动、Y向平动和扭转,周期、振型和阻尼比。传感器类型以加速度计为主、辅以必要的速度及位移传感器作为校核。 5) 应变监测。 是指施工全周期内,测量层各监测点在该层施工完毕至工程竣工阶段,针对结构构件随施工过程应力应变的监测。 6) 标高监测。 是指施工全周期内,针对塔体各层各关键点随施工过程结构标高的监测。 7) 垂直度监测。 是指施工全周期内,针对塔体各关键点随施工过程垂直度的监测。 8) 沉降监测。 是指施工全周期内,针对塔楼基础以及塔体各关键点随施工过程沉降的监测 。Kbdc2ql88
桥梁结构健康监测的现状与发展方向:目前我国桥梁养护单位由于经济条件的制约,桥梁结构健康监测开展并不普遍,仅在徐浦大桥、南京长江第二大桥、润扬大桥等有一定影响的特大桥中采用,并且普遍存在着监测项目种类不足的情况。在监测数据的管理方面,没有一个较为完善的数据存储与管理系统,大量的监测数据得不到妥善的处理与利用。并且,现有的桥梁结构监测和状态评估系统大多属于单一的监测系统或者是单一的管理系统。随着经济的发展和管理部门对结构安全监测认识的进一步提高,桥梁健康监测技术将越来越趋向于普遍化、智能化、实时化、网络化。 普遍化,随着国内大型桥梁的不断建成,管理者对做好桥梁的运营、养护,随时了解桥梁结构的健康状况,及时对桥梁进行安全评价的要求日益迫切,并给与高度重视和经济支撑,使桥梁健康监测系统得以广泛应用。 智能化,通过开发和应用高性能智能传感设备,达到进行自感知、自适应、自诊断、自愈合和智能传输测试的目的。 实时化,能及时掌握桥梁工作状态,消除人工检测的滞后性和低效性。能准确判别桥梁安全性能、使用性能和资金使用效率之间的*化临界点,避免重大事故的出现和资源的浪费。 网络化,桥梁实时监测系统的网络化可以实现监测数据的共享,以便各地*对桥梁状态的评估,更可实现对远离城市桥梁的自动实时监测,实现良好的社会效益和经济效益 。
结构健康监测-施工过程标高监测 水平截面的倾斜度将直接影响结构的后续施工,应测量各控制截面监控点的标高以确保该截面的水平度。监控点的坐标测量也是本施工监控项目的重点。 1.1 监测控制网的建立 由于施工方已经建立了测量控制网,监控方在对测量控制网复核后,利用其外围控制网建立不同于施工方的内部网,以便将关键点的测量与施工方的结果进行比较。 在施工监控开始前,首先对施工方建立的施工平面控制网和高程控制网进行复测,高程和平面观测采用《建筑变形测量规程》中的二级变形测量精度指标,即:标高观测中观测点测站高差中误差不大于0.5mm;位移观测中观测点坐标中误差不大于3.0mm。高程基准网按《城市测量规范》中二等水准测量要求进行,采用精密水准仪,视线长度不大于50m,前后视距差不大于1.0m,任一测站前后视距累积差不大于3.0m。监控方在对测量控制网复核后,利用其外围控制网建立不同于施工方的监测控制网。以下各标高、坐标监测项目均是基于复测后的控制点进行。 1.2 监测时间和监测频率 水平度的测量须结合标高测量,并且在日出之前进行,以消除结构由于日照作用导致的不均匀温度分布所带来的影响。 由于核心筒与巨柱施工不同步,因此同一设计标高处的核心筒与巨柱施工是一前一后的,这就有可能导致标高不匹配的问题,从而使得连接核心筒和巨柱的伸臂桁架产生较大的内力,这对于结构是非常不利的,所以在进行标高监测时应确保同一区域内的巨柱和核心筒上的测点要同期实时观测,并及时记录对比。若出现标高不匹配的情况,可采取合适措施严格控制伸臂桁架的合拢时间,确保施工安全进行 。
安徽码头地震作用监测技术方案:http://www.testmart.cn/Home/News/data_detail/id/712000271.html