宣城桥梁风荷载监测公司-联系我们
承接所有地区检测鉴定业务/诚招城市合伙人
目前我国土木工程事故频繁发生,如桥梁的突然折断、房屋骤然倒塌等,地震、洪水、暴风等自然灾害也对建筑物和结构造成不同程度的损伤;在Northridge和1995年日本神户(Kobe)的大地震中,一些建筑物在遭受主震后并未立即倒塌,但结构却已受到严重损伤而未能及时发现,在后来的余震中倒塌了。还有一些人为的爆炸等破坏性行为,如美国世贸大褛倒塌对周围建筑物的影响,这些都造成了重大的人员伤亡和财产损失,而且已经引起人对于重大工程安全性的关心和重视、对结构性能进行监测和诊断,及时地发现结构的抗伤,对可能出现的灾害进行预测,评估其安全性已经成为未来工程的必然要求,也是木工程学科发展的一个重要领域。 健康监测系统及其组成:一般认为健康监测系统应包括下列几部分: 传感器系统,包括感知元件的选择和传感器网络在结构中的布置方案。 数据采集和分析系统,一般由强大的计算机系统组成。 监控中心,能够及时预测结构的异常行为。 实现诊断功能的各种软硬件,包括结构中损伤位置、程度类型识的*判据。 传愿器监测的实时信号通过信号采集装置送到监控中心,进行处理和判断,从而对结构的健康状态行评估,若出现异常,由监控中心发出预警信号,并由故障诊断模块分析查明异常原因,以便系统安全可地运行 。宣城桥梁风荷载监测公司-联系我们
。
。
本项目采用1+2型GPS 监测方案,即一个固定站(基站)和二个移动站。当结构施工到相应监测楼层时,在结构刚度中心及角部各布置两个移动站,用来测试结构的整体水平位移。由于结构的运动除了两个方向的水平平动外还可能有绕中心的扭转,根据两个测点的测试结果可以计算出结构的扭转相应。 固定站的安装标准要求很高,需要选择距离移动站600m之内一个开阔场地采用挖坑深埋方式布设固定站,作为移动站的差分参考。如果工地现场的条件不够,可以考虑直接采用当地政府的大地监测网络基准站,通常他们具有更高的安装精度,一般数据的获得需要付费。 移动站安装在结构上之后,结构一直在振动,因此,移动站的零点选择也是比较困难的。零点的可以采用如下步骤实现:振动位移可以通过加速度计和激光位移计,通过振动台给出不同频率和振幅的振动,然后由测到的GPS振动位移与加速度计和激光位移计测到的振动位移相比,从而验证GPS测定振动位移的精度。用同样的方法,通过激光位移计测到的平动位移(平均位移)验证GPS的平均位移精度。 由于本结构高,建筑地面的 GPS 参考站信号会被周围建筑阻挡;因此本项目拟在塔楼开阔场地不动点处布置1个GPS参考站,其与2个GPS流动站组成一个完备的GPS 观测环路,以提高GPS观测的可靠性,GPS在平面的布置点如图 6.5?4。当结构施工到相应监测楼层时,在所监测楼面中心处和外筒各布置一台GPS观测站监测结构的水平方向位移。结构的测试楼层主要为10个加强层。由于结构的运动除了两个水平方向平动外还可能有绕中心的扭转,根据中心点和外筒测量得到的运动可以计算出结构的扭转 。宣城桥梁风荷载监测公司-联系我们 在施工阶段,位移监测楼层施工完成时需对变形进行测量。在进行加强层施工时,变形数据观测间隔不应少于5天。结构封顶至所有上部荷载施加完毕,变形观测间隔不应少于1个月。 施工期间基本原则是不布线或尽量少布线。测试时根据需要采用独立监测系统,数据线直接接入测点旁的电脑中。一层测区一台电脑,一个楼层若有多个测点,可根据情况确定一台或多台电脑,数据线不跨越楼层。若采用监测系统,加速度仪设在子站所在楼层,布线通过数据线槽一并接入子站,然后统一传递到站。 GPS接收机和GPS参考站安装在安全和有保护装置的位置并进行避雷保护。GPS天线的位置应当仔细选择,避免由于电缆、障碍物等引起多路径影响。施工阶段,由于施工平台可能会屏蔽GPS信号,因此需对GPS流动站加装信号接收天线放大器,以保证接收数据的可靠性和准确性。GPS天线与数据采集系统之间是波特率为115200的光缆来进行传输。施工期间基本原则是不布线或尽量少布线。测试时根据需要采用独立监测系统,光缆直接接入测点旁的电脑中 。
结构健康监测- 结构性能评估: 在上述结构实测分析和结构理论分析的基础上,将不同时期(或不同工况下)的实测结果进行对比,以及将实测分析与理论分析的结果进行对比,可以明确结构工作状态的改变趋势以及当前的结构工作状态。 XX中心主塔楼结构工作状态的评估可以分为构件和结构两个层次。就构件层次而言,重点关注结构主要受力构件关键部位应变传感器测试的数据,将监测的数据输入的数据库之后,还需要根据结构设计分析结果,找到构件在设计荷载作用下的应力水平,或者构件达到极限承载力时的应力水平,以此可以直观实时显示结构的实际状况。由于单根构件或部分构件的失效往往并不会导致整个结构的破坏,为此还有必要对整体结构的实际工作状态进行评估。就结构层次而言,重点关注结构自振特性的指标,将不同时期实测结果进行对比,明确结构工作状态的变化趋势;将实测结果与更新的有限元模型基础上的模态分析结果进行对比,评定结构实际的工作状态。 在上述结构实际工作状态评估的基础上,就可以进行结构安全评定。结构安全评定分为确定性安全评定和基于可靠度理论的安全评定两种方法。
XXXX中心主塔楼结构健康监测主要包括两个阶段工作:施工过程的监测和运营阶段监测。监测内容主要包括:地震作用监测、风荷载监测、位移监测、加速度监测、温度监测、应变监测、标高监测、倾斜监测和沉降监测。 本项目设计的结构监测系统将实现如下功能目标: 1.能够对结构使用过程中的风速、风向、气温、湿度、气压等状态进行实时同步监测; 2.能够对结构使用过程中结构关键构件局部应变、结构楼层加速度响应、结构顶部风致位移状态进行实时监测; 3.能够对结构使用过程中的地震动及结构的局部风压进行实时同步监测; 4.可以对结构进行动力特性监测和状态识别,得到结构自振频率、振型、阻尼比等; 5.能够对结构在强风过程中的工作状态进行同步监测记录,并实时显示; 6.能够对结构使用过程中的应力界、振动幅值界进行报警; 7.能够对结构出现较大的动力特性改变进行报警; 8.能够实现结构响应状况连续稳定的监测; 9.具备数据挖掘功能,可对大量数据集进行寻找和分析,提取和校验数据、创建与调试模型、对数据模型进行数据查询以及维护数据挖掘模型的有效性; 10.中心数据库的数据管理功能(存储、打印、显示等) 。Kbdc2ql88
桥梁结构健康监测的现状与发展方向:目前我国桥梁养护单位由于经济条件的制约,桥梁结构健康监测开展并不普遍,仅在徐浦大桥、南京长江第二大桥、润扬大桥等有一定影响的特大桥中采用,并且普遍存在着监测项目种类不足的情况。在监测数据的管理方面,没有一个较为完善的数据存储与管理系统,大量的监测数据得不到妥善的处理与利用。并且,现有的桥梁结构监测和状态评估系统大多属于单一的监测系统或者是单一的管理系统。随着经济的发展和管理部门对结构安全监测认识的进一步提高,桥梁健康监测技术将越来越趋向于普遍化、智能化、实时化、网络化。 普遍化,随着国内大型桥梁的不断建成,管理者对做好桥梁的运营、养护,随时了解桥梁结构的健康状况,及时对桥梁进行安全评价的要求日益迫切,并给与高度重视和经济支撑,使桥梁健康监测系统得以广泛应用。 智能化,通过开发和应用高性能智能传感设备,达到进行自感知、自适应、自诊断、自愈合和智能传输测试的目的。 实时化,能及时掌握桥梁工作状态,消除人工检测的滞后性和低效性。能准确判别桥梁安全性能、使用性能和资金使用效率之间的*化临界点,避免重大事故的出现和资源的浪费。 网络化,桥梁实时监测系统的网络化可以实现监测数据的共享,以便各地*对桥梁状态的评估,更可实现对远离城市桥梁的自动实时监测,实现良好的社会效益和经济效益 。
倾斜仪通常用于测量结构主要竖向承重构件(核心筒、剪力墙等与结构整体变形相一致的构件)竖向的倾角变化。它的主要优点不仅可以计算获得结构顶端水平位移,还能获得高层结构中心线沿竖直方向的倾角变化。主要用于结构在强风强震下的各楼层层间位移的实时监测,其结果可以清晰、快速有效地反应结构的主体性能。 在施工阶段,特别是结构处于较低高度(小于200米)时,结构水平位移相对较小,结构外围幕墙体系尚未完全建立,其结构性状与使用期间结构性状不同。因此监测的要求和目标也不同。由于施工中施工设备、施工机具、施工工艺等的不同,以及条件限制,一般情况下不进行水平位移的实时监测。当结构,特别是混凝土核心筒上升到200米以上,在大风期间应进行核心筒的水平位移实时监测,以获得塔楼的相关数据,为核心筒中塔吊的正常工作以及相关高空作业积累经验和数据,同时为不同高度、不同风荷载下正常施工、高空正常作业积累经验和数据。 在已建的子站的核心筒中心的剪力墙上合理设置倾斜仪,一般一个测区布置X向和Y向两台倾斜仪,分别布置在两道剪力墙上,通过数据采集、传输与处理技术相结合,形成倾角仪-数据采集系统-数据处理系统-终端输出系统,实现高层建筑结构在强风强震下的侧向位移的动态监测 。
宣城码头构件应力应变监测公司-联系我们:http://www.testmart.cn/Home/News/data_detail/id/712000329.html