
PV016R1K1AYN100
PV016R1K1T1NMMC
PV016R1L1T1NFDS
PV016R1K1T1NELB
PV016R1K1T1NECC
PV016R1K1T1NFFD
PV016R1K1T1NFRC
PV016R1K1T1N001
PV016R1K1T1N100
PV016R1K1T1NFDS
PV016R1K1T1NFR1
PV016R1K1T1NFHS
PV016R1K1T1NMM1
PV016R1K1T1NMRC
PV016R1K1T1NFWS
PV016R1K1T1NFF1
PV020R1K1T1N001
PV020R1K1T1N100
PV020R1K1T1NFDS
PV020R1K1T1NFR1
PV020R1K1T1NFHS
PV020R1K1T1NMMC
PV020R1K1T1NMM1
PV020R1K1T1NMRC
PV020R1K1T1NFWS
PV020R1K1T1NFRC
PV020R1K1T1NFF1

PV020R1K1T1NHLC
PV020R1K1T1WMM1
PV020R1K1T1NBLC
PV020R1K1T1NFRL
PV020L1K1T1NFWS
PV020R1K4T1NFR1
PV020R1K1AYNMMC
PV020R1K8T1VMMC
PV020R1K1T1NMR1
PV020R1K1T1NFRZ
PV020R1K4T1NFHS
PV020R1K1A1NMMC
PV020R1K1T1NMMK
PV020R1K1T1NKLC
PV020R1K1T1NMF1
PV020R1K1T1WFDS
PV020R1K1T1WFR1
PV020R1K1T1WMMC
PV020R1K1T1NMRZ
PV020R1K1T1WMRC
PV020R1K1T1NF
PV020R1K1T1NFFP
PV020R1K1JHNMMC
PV020R1K8T1NFWS
PV020R1K1AYNMRZ
PV020R1K1T1VMMC
PV020R1K1T1WMR1
PV020R1K4T1NMR1
PV020R1K1T1NHCC
PV020R9K1T1NMMC
PV020R1K8T1NMMC
PV020R1K8T1N001
PV020R1K1T1NFFC
PV020R1K4T1NMMC
PV020R1L1T1NMMC
PV020L1K1T1NMMC
PV020R1K1S1NFWS
PV020R1K1T1NGLC
PV020R1K1T1NMRK
PV020R1K1T1VFDS
PV023R1K1T1N001

PV023R1K1T1N100
PV023R1K1T1NFDS
PV023R1K1T1NFR1
PV023R1K1T1NFHS
PV023R1K1T1NMMC
PV023R1K1T1NMM1
PV023R1K1T1NMRC
PV023R1K1T1NFWS
PV023R1K1T1NFRC
PV023R1D1T1NMMC
PV023R1D1T1NUPR
PV023R1D3T1NMMW
PV023R1E1T1NMFC
PV023R1E1T1NUPR
PV023R1K1AYNMMC
PV023R1K1AYNMMD
PV023R1K1AYNMMW
PV023R1K1AYNMRC
PV023R1K1AYNMR1
PV023R1K1A1NECC
PV023R1K1T1NCCC
PV023R1K1T1NCLC
PV023R1K1T1NDCC
PV023R1K1T1NDCD
PV023R1K1T1NDLC
PV023R1K1T1NDLD
PV023R1K1T1NDL1
PV023R1E1T1NGLC
PV023R1K8T1VFHS
PV023R1K1A1NFWS
PV023R1L1T1NFRC
PV023R1L1T1NCLC
PV023R1K1T1NBCC
PV023R1K1T1NF
FPGA方法一般成本较高,但如果项目需要大量定制逻辑,这就是一种高成本效益的方法。这些器件对于构建ASI小批量产品的原型而言极具价值。这类应用的上市时间至关重要,而较大型产品需要持续的硬件灵活性。微控制器搭配逻辑与FPGA搭配CPU,这两种器件类型都能为现场提供硬件灵活性。一旦基于闪存的器件成为常规,现场升级就会成为标准。*早设计人员只能够升级固件,但现在硬件(逻辑)和固件都能够在现场轻松实现升级。
PV023R1K1T1NECC
PV023R1K1T1NELC
PV023R1K1T1NEL1
PV023R1K1T1NGCC
PV023R1K1T1NGLC
PV023R1K1T1NGL1
PV023R1K1T1NMFC
PV023R1K1T1NMFW
PV023R1K1T1NMF1
PV023R1K1T1NMMD
PV023R1K1T1NMMW
PV023R1K1T1NMRD
PV023R1K1T1NMR1
PV023R1K1T1NUPD
PV023R1K1T1NUPE
PV023R1K1T1NMMK
PV023R1K1AYNMRZ
PV023R1K1T1WFR1

特高压输电线路由于电压更高、导线截面大等特点,现有可听噪声预测方法已不再适用。如何实现特高压输电线路可听噪声的准确预测,已成为特高压输电线路设计和建设时一个亟待解决的关键问题。输电线路电晕放电可听噪声的产生及特性在空气中,各种各样的声音都起始于空气的振动,可听噪声也不例外。电晕放电过程中可听噪声是如何产生的?具有怎样的特性?下面将对这些问题进行回答。输电线路导线表面由于制造工艺带来的毛刺及长期运行导线的积污和腐蚀等原因,导线表面会存在一定的缺陷,造成导线表面附近的电场强度增大。