天津HS1-20/3P+N-275-440V电涌保护器浪涌保护器,也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。当电气回路或者
通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。
浪涌保护器,适用于交流50/60HZ,额定电压220V/380V的
供电系统中,对间接雷电和直接雷电影响或其他瞬时过压的电涌进行保护,适用于家庭住宅、第三产业以及工业领域电涌保护的要求。
发展历程:
*原始的电涌保护器羊角形间隙,出现于19世纪末期,用于
架空输电线路,防止雷击损坏设备绝缘而造成停电。20世纪20年代,出现了铝浪涌保护器,
氧化膜浪涌保护器和丸式浪涌保护器。30年代出现了管式浪涌保护器。50年代出现了
碳化硅防雷器。70年代又出现了金属氧化物浪涌保护器。现代高压浪涌保护器,不仅用于限制电力系统中因雷电引起的过电压,也用于限制因系统操作产生的过电压。1992年以来,以德、法为代表的工控标准35mm导轨卡接式可拔插SPD防雷模块,开始大规模引进到,稍后以美、英为代表的一体化箱式电源防雷组合也进入了。
基本特点:
1.保护通流量大,残压极低,响应时间快;
2.采用*灭弧技术,避免火灾;
3.采用温控保护电路,内置热保护;
4.带有电源状态指示,指示浪涌保护器工作状态;
5.结构严谨,工作稳定可靠。
分析:
引言
雷电灾害是*严重的自然灾害,全世界每年因雷电灾害造成的人员伤亡、财产损失不计其数。随着电子、
微电子集成化设备的大量应用,雷电过电压和雷击电磁脉冲所造成的系统和设备的损坏越来越多。因此,尽快解决建筑物和电子信息系统雷电灾害防护问题显得十分重要。
随着相关设备对防雷要求的日益严格,安装浪涌保护器(Surge Protection
Device,SPD)抑制线路上的浪涌和瞬时过电压、泄放线路上的过电流成为现代防雷技术的重要环节。
雷电的特性
防雷包括外部防雷和内部防雷。外部防雷以接闪器(避雷针、避雷网、避雷带、避雷线)、引下线、接地装置为主,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针(带、网、线)、引下线等泄放入大地。内部防雷包括防雷电感应、线路浪涌、地电位反击、雷电波入侵以及电磁与静电感应的措施。其基该方法是采用等电位联结,包括直接连接和通过SPD间接连接,使金属体、设备线路与大地形成一个有条件的等电位体,将因雷击和其他浪涌引起的内部设施分流和感应的雷电流或浪涌电流泄放入大地,从而保护建筑物内人员和设备的安全。
雷电的特点是电压上升非常快(10μs以内),峰值电压高(数万至数百万伏),电流大(几十至几百千安),维持时间较短(几十至几百微秒),传输速度快(以光速传播),能量非常巨大,是浪涌电压中*破坏力的一种。
按工作原理分:
按其工作原理分类,SPD可以分为电压开关型、限压型及组合型。
⑴电压开关型SPD。在没有瞬时过电压时呈现高阻抗,一旦响应雷电瞬时过电压,其阻抗就突变为低阻抗,允许雷电流通过,也被称为“短路开关型SPD”。
⑵限压型SPD。当没有瞬时过电压时,为高阻抗,但随电涌电流和电压的增加,其阻抗会不断减小,其电流电压特性为强烈非线性,有时被称为“钳压型SPD”。
⑶组合型SPD。由电压开关型组件和限压型组件组合而成,可以显示为电压开关型或限压型或两者兼有的特性,这决定于所加电压的特性。
按用途分:
1.电源线路SPD
由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。在直击雷非防护区(LPZ0A)或在直击雷防护区(LPZ0B)与*防护区(LPZ1)交界处,安装通过Ⅰ级分类试验的浪涌保护器或限压型浪涌保护器作为*级保护,对直击雷电流进行泄放,或者当电源传输线路遭受直接雷击时,将传导的巨大能量进行泄放。在*防护区之后的各分区(包含LPZ1区)交界处安装限压型浪涌保护器,作为二、三级或更高等级保护。第二级保护器是针对前级保护器的残余电压以及区内感应雷击的防护设备,在前级发生较大雷击能量吸收时,仍有一部分对设备或第三级保护器而言是相当巨大的能量,会传导过来,需要第二级保护器进一步吸收。同时,经过*级
防雷器的传输线路也会感应雷击电磁脉冲辐射。当线路足够长时,感应雷的能量就变得足够大,需要第二级保护器进一步对雷击能量实施泄放。第三级保护器对通过第二级保护器的残余雷击能量进行保护。根据被保护设备的耐压等级,假如两级防雷就可以做到限制电压低于设备的耐压水平,就只需要做两级保护;假如设备的耐压水平较低,可能需要四级甚至更多级的保护。
选择SPD,首先需要了解一些参数及其工作原理。
⑴ 10/350μs波是模拟直击雷的波形,波形能量大; 8/20μs波是模拟雷电感应和雷电传导的波形。
⑵标称放电电流In是指流过SPD、8/20μs电流波的峰值电流。
⑶*放电电流Imax又称为*通流量,指使用8/20μs电流波冲击SPD一次能承受的*放电电流。
⑷*持续耐压Uc(rms)指可连续施加在SPD上的*交流电压有效值或直流电压。
⑸残压Ur指在额定放电电流In下的残压值。
⑹保护电压Up表征SPD限制接线
端子间的电压特性参数,其值可从*值的列表中选取,应大于限制电压的*值。
⑺电压开关型SPD主要泄放的是10/350μs电流波,限压型SPD主要泄放的是8/20μs电流波。
2.信号线路SPD
信号线路SPD其实就是信号避雷器,安装在信号传输线路中,一般在设备前端,用来保护后续设备,防止雷电波从信号线路涌入损伤设备。
1)电压保护水平(UP)的选择
UP 值不应过被保护设备耐冲击电压额定值,UP 要求SPD 与被保护的设备的绝缘应有良好配合。
在低压供配电系统装置中,设备均应具有一定的耐受电涌能力,即耐冲击过电压能力。当无法获得220/380V 三相系统各种设备的耐冲击过电压值时,可按IEC 60664-1 和GB 50057-1994(2000 版)的给定指标选用。
2)标称放电电流In 的(冲击通流容量)选择
流过SPD、8/20 μs 电流波的峰值电流。用于对SPD 做II 级分类试验,也用于对SPD 做I 级和II 级分类试验的预处理。
事实上,In 是SPD 不发生实质性破坏而能通过规定次数(一般为20 次)、规定波形(8/20 μs)的*限度的冲击电流峰值。
3)*放电电流Imax(极限冲击通流容量)的选择
流过SPD、8/20 μs 电流波的峰值电流,用于II 级分类试验。Imax 与In 有许多相同点,他们都是用8/20 μs 电流波的峰值电流对SPD 做II 级分类试验。不同之处也很明显,Imax 只对SPD 做一次冲击试验,试验后SPD 不发生实质性破坏;而In 可以做20次这样的试验,试验后SPD 也不能有实质性破坏。因此,Imax 是冲击的电流极限值,所以*放电电流也称为极限冲击通流容量。显然,Imax>In。
工作原理:
浪涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为
“避雷器”或“
过电压保护器”英文简写为SPD.浪涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的
雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。
浪涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于浪涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。
基本电路:
浪涌保护器的电路根据不同需要,有不同的形式,其基本元器件就是上面介绍的几种,一个技术精通的
防雷产品研究工作者,可设计出五花八门的电路,好似一盒积木可搭出不同的结构图案。根据电路系统的区别,主要的SPD电路有单相、TN-C、TN-S三种。
分级防护:
*级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。第二级防雷器是针对前级防雷器的残余电压以及区内
感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。同时,经过*级防雷器的传输线路也会感应
雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。
*级保护
目的是防止
浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V。
入户电力变压器低压侧安装的
电源防雷器作为*级保护时应为
三相电压开关型电源防雷器,其雷电通流量不应低于60KA。该级电源防雷器应是连接在用户
供电系统入口进线各相和大地之间的大容量电源防雷器。一般要求该级电源防雷器具备每相100KA以上的*冲击容量,要求的限制电压小于2500V,称之为CLASS I级电源防雷器。这些电磁防雷器是专为承受雷电和感应雷击的大电流以及吸引高能量浪涌而设计的,可将大量的
浪涌电流分流到大地。它们仅提供限制电压(
冲击电流流过电源防雷器时,线路上出现的*电压称为限制电压)为中等级别的保护,因为CLASS I级保护器主要是对大浪涌电流进行吸收,仅靠它们是不能完全保护供电系统内部的敏感用电设备的。
*级电源防雷器可防范10/350μs、100KA的雷电波,达到IEC规定的*防护标准。其技术参考为:雷电通流量大于或等于100KA(10/350μs);残压值不大于2.5KV;响应时间小于或等于100ns。
第二级防护
目的是进一步将通过*级防雷器的残余浪涌电压的值限制到1500—2000V,对LPZ1—LPZ2实施等电位连接。
分配电柜线路输出的电源防雷器作为第二级保护时应为限压型电源防雷器,其雷电流容量不应低于20KA,应安装在向重要或敏感用电设备供电的分路配电处。这些电源防雷器对于通过了用户供电入口处浪涌放电器的剩余浪涌能量进行更完善的吸收,对于瞬态过电压具有极好的抑制作用。该处使用的电源防雷器要求的*冲击容量为每相45kA以上,要求的限制电压应小于1200V,称之为CLASS Ⅱ级电源防雷器。一般用户供电系统做到第二级保护就可以达到用电设备运行的要求了
第二级电源防雷器采用C类保护器进行相—中、相—地以及中—地的全模式保护,主要技术参数为:雷电通流容量大于或等于40KA(8/20μs);残压峰值不大于1000V;响应时间不大于25ns。
第三级保护
目的是*终保护设备的手段,将残余浪涌电压的值降低到1000V以内,使浪涌的能量不致损坏设备。
在电子信息设备交流电源进线端安装的电源防雷器作为第三级保护时应为串联式限压型电源防雷器,其雷电通流容量不应低于10KA。
*的防线可在用电设备内部电源部分采用一个内置式的电源防雷器,以达到完全消除微小的瞬态过电压的目的。该处使用的电源防雷器要求的*冲击容量为每相20KA或更低一些,要求的限制电压应小于1000V。对于一些特别重要或特别敏感的电子设备具备第三级保护是必要的,同时也可以保护用电设备免受系统内部产生的瞬态过电压影响。
对于微波通信设备、移动机站通信设备及雷达设备等使用的整流电源,宜视其工作电压的保护需要分别选用工作电压适配的
直流电源防雷器作为末级保护。
第四级及以上
根据被保护设备的耐压等级,假如两级防雷就可以做到限制电压低于设备的耐压水平,就只需要做两级保护,假如设备的耐压水平较低,可能需要四级甚至更多级的保护。第四级保护其雷电通流容量不应低于5KA。
安装方法:
浪涌保护器采用35MM标准导轨安装
对于固定式SPD,常规安装应遵循下述步骤:
1)确定放电电流路径
3)为避免不必要的感应回路,应标记每一设备的 PE
导体,
4)设备与SPD之间建立等电位连接。
5)要进行多级SPD的能量协调
shanghaiyaojin