6SL3224-0BE21-1UA0变频器一台

发布时间:2021-07-24

6SL3224-0BE21-1UA0变频器一台---科旭机电现货供应西门子变频器,型号规格齐全,原装品质保障!物美价优,欢迎新老客户来电垂询!联系方式请看页面右侧!

 

公司介绍:

6SL3224-0BE21-1UA0变频器一台

 

6SL3224-0BE21-1UA0变频器一台

变频器工作原理变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。1. 电机的旋转速度为什么能够自由地改变?*1: r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:2极电机 50Hz 3000 [r/min]4极电机 50Hz 1500 [r/min]结论:电机的旋转速度同频率成比例本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的*设备。

6SL3224-0BE21-1UA0变频器一台

变频器的种类可分为,按直流电源性质分类A、电压型--储能元件为电容器,被控量为电压也就是相当于提供的是电压源,它动态响应较慢,制动时需在电源侧设置反并联逆变器才能实现能量回馈,可适应多电机拖动。其逆变输出的交流电压为矩形波或阶梯波,而电流的波形经过电动机负载滤波后接近于正弦波,但有较大的谐波分量。由于它是作为电压源向交流电动机提供交流电功率,所以主要优点是运行几乎不受负载的功率因素或换流的影响;缺点是当负载出现短路或在变频器运行状态下投入负载,都易出现过电流,必须在极短的时间内施加保护措施。B、电流型--储能元件为电抗器,直流内阻较大相当于提供的是电流源,动态响应快,可直接实现回馈制动,感应电动机电流型变频调速系统可以频繁、快速的实现四象限运行,更适宜一台逆变器对一台电机供电的单机运行方式。其优点是具有四象限运行能力,能很方便地实现电机的制动功能。缺点是需要对逆变桥进行强迫换流,装置结构复杂,调整较为困难。另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响。(2) 依据工作原理分类A、V/f控制--- V/f控制变频器就是保证输出电压跟频率成正比的控制这样可以使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生,多用于风机、泵类节能,用压控振荡器实现。异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,电压一定降低频率,磁通变大,磁回路趋向饱和,严重时将烧毁电机。当频率与电压要成比例地改变,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。B、 转差频率控制---转差调速即改变异步电动机的滑差来调速,滑差越大速度越慢,绕膝是电机转子串电阻,转差频率控制技术的采用,使变频调速系统在一定程度上改善了系统的静态和动态性能,同时它又比矢量控制方法简便,具有结构简单、容易实现、控制精度高等特点,广泛应用于异步电机的矢量控制调速系统中。不需要进行复杂的磁通检测和繁琐的坐标变换,只要在转子磁链大小不变的前提下,通过检测定子电流和转子角速度,经过数学模型的运算就可以间接的磁场定向控制。要提高调速系统的动态性能,主要依靠控制转速的变化率,显然,通过控制转差角频率就能达到控制的目的。C、 矢量控制--依据直流电动机调速控制的特点,将异步电动机定子绕组电流按矢量变换的方法分解并形成类似于直流电动机的磁场电流分量和转矩电流分量,只要控制异步电动机定子绕组电流的大小和相位,就可以控制励磁电流和转矩电流,这样控制交流异步电动机得转速就像控制直流电动机一样,得到良好的调速控制效果。它的主要特点是低频转矩大、动态响应快、控制灵活,一般是应用在恶略的工作环境、要求高速响应和高精度的电力拖动的系统等。

6SL3224-0BE21-1UA0变频器一台

2.2电压空间矢量(SVPWM)控制方式它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。2.3矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

6SL3224-0BE21-1UA0变频器一台

8.变频器控制方式之直接转矩控制(DTC)方式:变频器的DTC控制方式源于1985年,德国鲁尔大学的DePenbrock教授,他首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已*地应用在电力机车牵引的大功率交流传动上。直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。9.变频器控制方式之矩阵式交—交方式:变频器的矩阵式交-交方式省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的

上一篇:意大利MD墨迪FC6L0B-05...
下一篇:欢迎来访温州绿色土工布温州植被网...