6SE6420-2UC23-0CA1变频器简介---科旭机电现货供应西门子变频器,型号规格齐全,原装品质保障!物美价优,欢迎新老客户来电垂询!联系方式请看页面右侧!
公司介绍:
2.2电压空间矢量(SVPWM)控制方式它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。2.3矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
7.变频器控制方式之矢量控制(VC)方式:变频器的VC控制方式的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
摘要:本文介绍了变频器的工作原理和控制方式,文中遵循理论和实际相结合的原则,对变频器的工作原理和控制方式作了详细的对比和分析。关键词:变频器、控制方式、工作原理近年来,随着电力电子技术、微电子技术及大规模集成电路的发展,生产工艺的改进及功率半导体器件价格的降低,变频调速越来越被工业上所采用。如何选择性能好的变频其应用到工业控制中,是我们*技术人员共同追求的目标。下面结合作者的实际经验谈谈变频器的工作原理和控制方式:1 变频器的工作原理我们知道,交流电动机的同步转速表达式位:n=60 f(1-s)/p (1)式中 n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。2变频器控制方式低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。2.1U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出*转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。
同时变频器的作用功能还包含以下功能:1.可以减少对电网的冲击,就不会造成峰谷差值过大的问题。2.可以加速功能可控,从而按照用户的需要进行平滑加速。3.电机的和设备停止方式可控,使整个设备和系统更加安全,寿命也会相应增加。4.控制电机的启动电流,充分降低启动电流,使电机的维护成本降低。5.可以减少机械传动部件的磨损,从而降低采购成本,同时可以提高系统稳定性。6.降低了电动机启动电流,提供更可靠的可变电压和频率。7.有效的减少了无功损耗,增加了电网的有功功率。8.优化工艺过程,并能根据工艺过程迅速改变,还能通过远控PLC或其他控制器来实现速度变化。9.多重保护使变频器高度智能化,不仅能保护自身的安全正常使用,也大大保护了前后级设备的安全运行。10.控制功能齐全,可以很好的配合其他控制设备和仪器,实现系统化组网的集中实时监视和控制,一体化开发,为用户节省了选型的麻烦系统兼容性的问题节约了成本。