乐清市示波器校准校验公司 免费
热工类仪器校准:
温度计、温湿度计、烤箱、恒温恒湿机、盐雾试验机、耐寒试验机、耐黄变试验机、熔融指数试验机、电线加热变形试验机、温度巡检仪、炉温测试仪、多点采集器、恒温槽(水槽、油槽、水浴锅)、辐射温度计等。
力学类仪器校准:
砝码、电子称、电子天平、压力表、扭力批、测力仪、推拉力计、拉压力试验机、摆锤式冲击试验机、布洛维氏硬度计、振动试验台、胶带剥离试验机、纸板环压试验机、冲击试验机、破裂强度试验机、数字式渗水性测定仪、拉链往复试验机等。
丰富测试功能助您毫米波信号测量。4051系列信号/频谱分析仪提供频率覆盖范围内的频谱分析、功率测量组件、IQ分析、相位噪声测试、瞬态分析、脉冲信号分析等多种测试功能选择;具有良好的扩展能力,可通过灵活配置选件进一步提升测试性能,也可通过各种数字和模拟信号输出接口构建测试系统或进行二次开发。-1相位噪声测试-2瞬态分析-3脉冲信号分析外部频率扩展可实现325GHz毫米波信号测量。67GHz还不够您使用?还有外部频率扩展功能。
乐清市示波器校准校验公司图(1)
实时频谱分析功能界面显示其中,荧光频谱图是基于频谱统计的二维图谱。在荧光频谱图中,横轴代表频率,纵轴代表幅度,像素点的色彩代表该频率点的幅度统计次数,如所示。通过荧光频谱图和无缝瀑布图对实现信号实现无丢失显示,实时频谱分析功能可以发现瞬态信号并显示信号的实时变化。荧光频谱原理示意图荧光频谱图的应用荧光频谱将一段时间内所统计的各个频率及相应幅度出现的次数转化为颜色,通过颜色揭示信号的概率。一般而言,荧光频谱图默认设置能够满足绝大数的信号显示要求。
在CAN总线中,错误帧虽然不被接收,但是依然占用总线传输时间,所以导致其他正常节点发送延迟或者无法发送,影响整车CAN总线正常运行环境。解决方案:主机厂必须要求节点C的工作电压必须要工作在1.8V,乃至2.0V,这个问题便得以解决。错误帧占用总线波特率不一致导致CAN网络系统死机位时间(位宽)和波特率是CAN总线通讯的基本要素。位时间=1/波特率,比如波特率是500k,那位时间是2us。在相同的CAN总线采样频率下,当某一个节点的位时间发生抖动时,即位时间为1.8us或者2.2us,将导致采样点的逻辑判断出现异常,出现总线错误,导致CAN网络系统死机。在很多情况下,引起密闭空间内危险气体存在的源头也许并不在密闭空间之内。比如,在很多炼油厂、化工厂中,设备中有毒(有毒气体报警器)和(可燃气体报警器)气体的释放是经常存在的,而由于气体的可流动性,一个区域的危险气体释放会很快扩散到其它区域,而在遇到密闭空间的结构时,这些气体就可能通过扩散、渗透、下沉等方式进入密闭空间,因此在决定密闭空间进入的有毒有害气体检测方法时,要充分考虑到所有可能的发生情况。
乐清市示波器校准校验公司图(2)
校准的目的及步骤:
1.确定示值误差,判定是否在允差范围内;2得出标称值偏差的报告值,并调整测量仪器或对其示值加以修正;
校准的依据是校准规范或校准方法。校准的结果可记录在校准证书或校准报告:查明和确认测量仪器是否符合要求的程序,它包括检查、加标记和(或)出具校准证书。
乐清市示波器校准校验公司图(3)
1.校准不具有强制性,是企业自愿溯源行为;检---定则具有法制性,属计量管理范畴的行为。
2.校准主要确定测量仪器的示值误差;检---定则是对其计量特性及技术要求的评定。
3.校准的依据是校准规范、校准方法,通常应做统一规定,有时也可以自行制定; 检---定的依据则是按法---定程序审批公布的计量检---定规程。
4.校准通常不判断测量仪器合格与否,必要时可以确定其某项性能是否符合预期要求; 检---定则必须作出合格与否的结论。
5.校准结果通常要求出具校准证书和校准报告; 检---定结果则是合格的发检---定证书,不合格的发不合格通知书。
乐清市示波器校准校验公司图(4)
工程师用四通道在线编程器P8-ISP对客户样机编程时,发现现象确如客户所说的一致。凭着丰富的编程调试经验,我们的工程师将问题为芯片被误操作,导致被加密,查阅芯片技术手册后将根源锁定到2个寄存器上。为了解决这个问题,工程师将P8-ISP的时序代码作相应的修改,在执行擦除、编程操作之前,将2个寄存器的置位顺序做了调整,使MCU处于解密状态,确保芯片在编程过程中不会被误加密。采用更新好时序的P8-ISP来烧写MCU后,客户的汽车电子标签(OBU)烧片效率和良品率都有了明显提高,百万套OBU量产也不再是难事。而有些泄漏又非常隐蔽,除了微小的不容易听到声响之外,“隐蔽”的泄漏往往发生在工作场所背景噪声较大的环境中。以上所有的泄漏,组成了整个系统中的泄漏源。事实上,早在1995年,美国能源部就发起了压缩空气挑战活动,以帮助工业领域的压缩空气使用量在21年前减少1%。他们指出,压缩空气是工厂内成本的公用资源,在美国所生产的所有压缩空气中,存在3%的泄漏损失。他们估计每年的成本约为32亿美元。常见的压缩空气泄露通常发生在以下这些部位:管道接头、快插接头压力调节器(FRL)经常打开的冷凝水排放阀破损的软管,破裂的管道工厂里的泄漏无所不在,如果一个工厂希望消除泄漏几乎不可能,我们能够做到的就是将压缩空气的泄漏控制在一个合理的范围内。