吉安市泰和县器具校准机构-仪器校验检测
世通仪器检测在有多个实验室欢迎来电咨询:陈工(广东,江苏,陕西,河南,重庆,四川,福建,安徽,浙江,江西等等)均可上门检测,校准证书带CNAS,出证书快,证书可,(主要业务:仪器计量,仪器校准,仪器检测,仪器校验,仪器外校,仪器校正,仪器测量,仪器测试,仪器,仪表计量,仪表校准,仪表检测,仪表校验,仪表外校,仪表校正,仪表测量,仪表测试,仪表,量具计量,量具校准,量具检测,量具校验,量具外校,量具校正,量具测试,量具测量,量具,器具计量,器具校准,器具检测,器具校验,器具外校,器具校正,器具测量,器具测试,器具,设备计量,设备校准,设备检测,设备校验,设备外校,设备校正,设备测量,设备测试,设备,仪器检验,仪表检验,量具检验,器具检验,设备检验)报价流程:发公司名称和仪器清单-收到清单开始报价-价格合适预排时间上门检测或者寄实验室检测-检测好1-5天出证书-寄回证书-付款。

比表面和孔径分析本质上是对微纳米粉体材料表面特性的表征与测量,比表面及孔径分析仪是一种比较复杂且用途广泛的分析型仪器。小谱就其发展史、检测原理、结构等和大家进行探讨,一文把比表面及孔径分析仪讲通透。
关于比表面分析仪的历史,我们不得不提到美国麦克仪器。
1962年,美国麦克仪器研制出世界上*台自动表面积分析仪,由此开启了比表面分析仪的发展之路。
*阶段
从上世纪70~80年代开始,我国出现了*代动态氮吸附仪,如中科化学所与北分厂研制的ST-03比表面及孔分析仪,中科大连化物所研制的BC-1比表面仪。这一阶段的比表面仪采用的都是动态法,仪器主要部件是色谱仪中常用的热导检测器,原理清晰、简单。但是由于当时工业水平不高,特别是传感器与计算机水平普遍很低,比表面仪未能实现产业化和推广应用,但老一代科技工作者打下的基础功不可没。
应该指出,动态法中的直接对比法是通过标准“物质”和未知“物质”进行对比测比表面积的,它忽略了样品与标样材料吸附特性的差别,测定比表面积有明显的局限性,即被测样品与标准样品的吸附特性必须一致,否则测定的性会受到影响,用户选用时应予以注意。

第二阶段
从2000年开始,由于*对微纳米材料技术的重视,材料的表面特性表征越显重要,北京理工大学对原有的动态仪器进行了全面的改造升级,推出了新一代动态比表面仪,成品于2003年进入市场,开启了比表面仪产业化的新里程。直接对比法具有一定局限性,为了与国际接轨,国内在2004年推出了动态BET比表面仪,该仪器融入了近代软、硬件技术,此种方法的关键技术是气体微流量的控制,使不同压力下的吸附量的自动测试成为可能,这是氮吸附比表面测试技术走向成熟的重要标志。到2005年,国内又研制*了动态常压单气路孔径分析仪,可以实现粗略的孔径分析,至此形成了具有特色的动态氮吸附仪系列产品,产业化速度提高,国产仪器的市场份额迅速增长。
一是根据测定样品吸附气体量方法的不同,可分为:连续流动法、容量法及重量法,重量法现在基本上很少采用;再者是根据计算比表面积理论方法不同可分为:直接对比法、Langmuir法和BET法等。同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流动法来测定吸附气体量的,而BET法既可以采用连续流动法,也可以采用容量法来测定吸附气体量。连续流动法是相对于静态法而言,整个测试过程是在常压下进行,吸附剂是在处于连续流动的状态下被吸附。连续流动法是在气相色谱原理的基础上发展而来,藉由热导检测器来测定样品吸附气体量的。连续动态氮吸附是以氮气为吸附气,以氦气或氢气为载气,两种气体按一定比例混合,使氮气达到的相对压力,流经样品颗粒表面。当样品管置于液氮环境下时,粉体材料对混合气中的氮气发生物理吸附,而载气不会被吸附,造成混合气体成分比例变化,从而导致热导系数变化,这时就能从热导检测器中检测到信号电压,即出现吸附峰。吸附饱和后让样品重新回到室温,被吸附的氮气就会脱附出来,形成与吸附峰相反的脱附峰。吸附峰或脱附峰的面积大小正比于样品表面吸附的氮气量的,可通过定量气体来峰面积所代表的氮气量。通过测定一系列氮气分压P/P0下样品吸附氮气量,可绘制出氮等温吸附或脱附曲线,进而求出比表面积。通常利用脱附峰来计算比表面积。特点:连续流动法测试过程操作简单,消除系统误差能力强,同时具有可采用直接对比法和BET方法进行比表面积理论计算。

容量法中,测定样品吸附气体量是利用气态方程来计算。在预抽真空的密闭系统中导入一定量的吸附气体,通过测定出样品吸脱附导致的密闭系统中气体压力变化,利用气态方程P*V/T=nR换算出被吸附气体摩尔数变化。直接对比法是利用连续流动法来测定吸附气体量,测定过程中需要选用标准样品(经严格比表面积的稳定物质)。并联到与被测样品完全相同的测试气路中,通过与被测样品同时进行吸附,分别进行脱附,测定出各自的脱附峰。在相同的吸附和脱附条件下,被测样品和标准样品的比表面积正比于其峰面积大小。优点:无需实际吸附氮气量体积和进行复杂的理论计算即可求得比表面积;测试操作简单,测试速度快,效率高。缺点:当标样和被测样品的表面吸附特性相差很大时,如吸附层数不同,测试结果误差会较大。直接对比法仅适用于与标准样品吸附特性相接近的样品测量,由于BET法具有更可靠的理论依据,目前国内外更普遍认可BET法比表面积测定。BET理论计算是建立在Brunauer、Emmett和Teller三人从经典统计理论推导出的多分子层吸附公式基础上,可以看出,BET方程建立了单层饱和吸附量Vm与多层吸附量V之间的数量关系,为比表面积测定提供了很好的理论基础。BET方程是建立在多层吸附的理论基础之上,与许多物质的实际吸附过程更接近,因此测试结果可靠性更高。实际测试过程中,通常实测3-5组被测样品在不同气体分压下多层吸附量V,以P/P0为X轴,为Y轴,由BET方程做图进行线性拟合,得到直线的斜率和截距,从而求得Vm值计算出被测样品比表面积。理论和实践表明,当P/P0取点在0.05-0.35范围内时,BET方程与实际吸附过程相吻合,图形线性也很好,因此实际测试过程中选点需在此范围内。由于选取了3-5组P/P0进行测定,通常我们称之为多点BET。当被测样品的吸附能力很强,即C值很大时,直线的截距接近于零,可近似认为直线通过原点,此时可只测定一组P/P0数据与原点相连求出比表面积,我们称之为单点BET。与多点BET相比,单点BET结果误差会大一些。若采用流动法来进行BET测定,测量系统需具备能调节气体分压P/P0的装置,以实现不同P/P0下吸附量测定。对于每一点P/P0下BET吸脱附过程与直接对比法相近似,不同的是BET法需样品实际吸附气体量的体积大小,而直接对比法则不需要。特点:BET理论与物质实际吸附过程更接近,可测定样品范围广,测试结果准确性和可信度高,特别适合科研及生产单位使用。

实验室地址
东莞部:广东省东莞市道滘镇厚德上梁洲工业区四横路7号
:江苏省苏州市昆山开发区昆嘉路379号
重庆世通:重庆市北碚区万宝大道184号3楼
cyxstyiqijc1239495
洛阳市伊川县量具校准机构-仪器校验检测:http://www.testmart.cn/Home/News/data_detail/id/751240724.html