吉安市泰和计量器具校验服务中心
世通仪器*从事仪器校正,仪器校准等服务,为了方便客户了解我们的服务过程,我们简单讲述我们进行仪器校正的调程是怎样的,我人的仪器校正工作大体有以下几方面:
(1)确定仪器校正元素。找出所有误差,确定哪些误差需要调整。
(2)分析仪器校正元素。分析调整元素对仪器性能及精度(预定的技术要求)的影响程度。
(3)确立调整方法。确定检验和调整方法,计算出调整数据。
(4)配备调试工装。选择或设计检验、装调用的工具和设备。
(5)调试。调整零、部件之间的相对位置。
(6)紧固。间定调整的成果。
结起来,仪器装配与仪器校正的过程大体可以归纳为以下几方面:
(1)熟悉对象。根据设计装配图纸,了解仪器的结构、工作原理和使用方法,并着重了 解哪些部分对仪器性能和精度影响较大。
(2)制定文件及设计工装。制定一些必要的装调工艺文件,设计于装调的工、夹、量具以及检测仪器和设备,选择检查用的通用仪器和装备。
(3)仪器校正前的准备工作,如做好零件的清洗、去漆和剔毛刺等工作。
(4)部件装调,指进行光学、机械部件的装配、调整并检验。
(5)装调,指光、机、电综合装调。
(6)鉴定,指进行仪器精度的测定。
(7)仪器的出厂试验。为了保证仪器的质童,还需根据仪器的用途及使用条件做振动、密封、温度等稳定性试验。
声发射检测仪器的设置和校准
6.2.1 校准信号的产生技术
声发射检测系统的校准包括在试验室内对仪器硬件系统灵敏度和一致性的校准与在现场对已安装好传感器的整个声发射系统灵敏度和定位精度的校准。对仪器硬件系统的校准需采用的电子信号发生器来产生各种标准函数的电子信号直接输入前置放大器或仪器的主放大器。对现场已安装好传感器的整个声发射系统灵敏度和定位精度的校准采用在被检构件上可发射机械波的模拟声发射信号,模拟声发射信号的产生装置一般包括两种,一种是采用电子信号发生器驱动声发射压电陶瓷传感器发射机械波,另一种是直接采用铅笔芯折断信号来产生机械波。
6.2.2 校准的步骤
(1) 仪器硬件灵敏度和一致性的校准:对仪器硬件系统的校准直接采用的电子信号发生器来产生各种标准函数的电子信号直接输入前置放大器或仪器的主放大器,来直接测量仪器采集这些信号的输出。比如,GB/T18182-2000标准规定:仪器的门槛精度应控制在?2dB范围内;处理器内的幅度测量电路测量峰值幅度值的精度为?2dB;处理器内的能量测量电路测量信号能量值的精度为?5%,同时要满足信号能量的动态范围不低于40dB;系统测量外接参数电压值的精度为满量程的2%。
(2) 现场声发射检测系统灵敏度的校准:通过直接在被检构件上发射声发射模拟源信号来进行校准。灵敏度校准的目的是确认传感器的耦合质量和检测电路的连续性,各通道灵敏度的校准为在距传感器一定距离(压力容器规定为100mm)发射三次声发射模拟源信号,分别测量其响应幅度,三个信号幅度的平均值即为该通道的灵敏度,多数金属压力容器的检测规程规定,每通道对铅笔芯模拟信号源的响应幅度与所有传感器通道的平均值偏差为土3dB或±4dB,而玻璃钢构件为土6dB。
(3) 现场声发射检测系统源定位的校准:通过直接在被检构件上发射声发射模拟源信号来进行校准。源定位校准的目的是确定定位源的*性和与实际模拟声发射源发射部位的对应性,一般通过实测时差和声速以及设置仪器内的定位闭锁时间来进行仪器定位精度的校准。定位校准的*终结果为,所加模拟信号应被—个定位阵列所接收,并提供*的定位显示,区域定位时,应至少被一个传感器接收到。多数金属容器检测方法中规定,源定位精度应在两倍壁厚或*传感器间距的5%以内。
6.2.3 传感器的选择和安装
(1) 传感器响应频率的选择:应根据被检测对象的特征和检测目的选择传感器的响应频率,比如金属压力容器检测用传感器的响应频率为100~400KHz,压力管道和油罐底泄漏检测传感器的响应频率为30~60KHz等。
(2) 传感器间距和阵列的确定:构件声发射检测所需传感数量,取决于试件大小和所选传感器间距。传感器间距又取决于波的传播衰减,而传播衰减值又来自用铅笔芯模拟源实际测得的距离一衰减曲线。时差定位中,*传感器间距所对应的传播衰减,不宜大于预定*小检测信号幅度与检测门槛值之差,例如,门榄值为40dB,预定*小检测信号幅度为70dB,则其衰减不宜大于30dB。区域定位比时差定位可允许更大的传感器间距。在金属容器中,常用的传感器间距约为1~6m,传感器阵列采用三角平面或曲面定位,多数容器的检测需布置约8~40多个传感器。
(3) 传感器的安装:传感器表面与试件表面之间良好的声耦合为传感器安装的基本要求。试件的表面须平整和清洁,松散的涂层和氧化皮应清除,粗糙表面应打磨,表面油污或多余物要清洗。对半径大于150mm的曲面可看成平面,而对小半径曲面应采取适当措施,例如,可采用转接耦合块或小直径传感器。对于接触界面,应填充声耦合剂,以保证良好的声传输。耦合剂不宜涂得过多或过少,耦合层应尽可能薄,表面要充分浸湿。耦合剂的类型,对声耦合效果影响甚少,多采用真空脂、凡士林、黄油、快干胶及其它超声耦合剂。对高温检测,也可采用高真空脂、液态玻璃及陶瓷等。但是,须考虑耦合剂与试件材料的相容性,即不得腐蚀或损伤试件材料表面。多用机械压缩来固定传感器。常用固定夹具包括:松紧带、胶带、弹簧夹、磁性固定器、紧固螺丝等。所加之力,应尽可能大一些,约为0.7MPa。
6.2.4 仪器调试和参数设置
(1) 检测门槛设置:检测系统的灵敏度,即对小信号的检测能力,决定于传感器的灵敏度、传感器间距和检测门槛设置。其中,门槛设置为其主要的可控制因素。
检测门槛,多用dBae来表示。检测门槛越低,测得信息越多,但易受噪声的干扰,因此,在灵敏度和噪声干扰之间应作折衷选择。多数检测是在门槛为35~55dB的中灵敏度下进行,*为常用门槛值为40dB。不同的门槛设置与适用范围见表6.2。常用金属压力容器检测的门槛一般为40 dB,但长管拖车的检测门槛为32 dB,纤维增强复合材料压力容器的检测门槛一般为48 dB。
门槛(dBae) 适 用 范 围
25-35 高灵敏度检测,多用于低幅度信号或高衰减材料或基础研究
35-55 中灵敏度检测,广泛用于材料研究和构件无损检测
55-65 低灵敏度检测,多用于高幅度信号或强噪声环境下的检测
(2) 系统增益设置:增益是仪器主放大器对声发射波形信号放大倍数的设置,一些20世纪70年代生产的老的声发射系统通常有分开的可变增益(dB)和门槛电压(伏特),在某些系统中,增益或门槛中的一个可能被固定,通过提高增益dB或降低门槛电压能获得较高的灵敏度。
20世纪80年代以后生产的仪器,均采用集成电路系统,对于操作者设定的增益(dB)和门槛(dBae),系统就能计算出合适的电压,把它放在门槛比较器上。因此,门槛的功能为主要控制灵敏度,改变增益设置将不改变灵敏度。增益的设置并不影响所测量的计数,持续时间,上升时间或幅度。但增益设置也是十分是重要的,它直接影响能量的测量和声发射信号的能量计数。
对于目前常用声发射仪器,为了保持系统在一合适的操作范围内,应根据检测灵敏度的要求来选定门槛,而增益十门槛应处于一定的范围,比如有些设备在55和88dB之间。
(3) 系统定时参数设置:定时参数,是指撞击信号测量过程的控制参数,包括:峰值定义时间(PDT)、撞击定义时间(HDT)和撞击闭锁时间(HLT)。
峰值定义时间,是指为正确确定撞击信号的上升时间而设置的新*峰值等待时间间隔。如将其选得过短,会把高速、低幅度前驱波误作为主波处理,但应尽可能选得短为宜。
撞击定义时间,是指为正确确定一撞击信号的终点而设置的撞击信号等待时间间隔。如将其选得过短,会把一个撞击测量为几个撞击,而如选得过长,又会把几个撞击测量为一个撞击。
撞击闭锁时间,是指在撞击信号中为避免测量反射波或迟到波而设置的关闭测量电路的时向间隔。
声发射波形随试件的材料、形状、尺寸等因素而变,因而,定时参数应根据试件中所观察到的实际波形进行合理选择stajuan188。
材料与试件 PDT(?s) HDT(?s) HLT(s)
复合材料 20~50 100~200 300
金属小试件 300 600 1000
高衰减金属构件 300 600 1000
低衰减金属构件 1000 2000 20000