BURKERT流量计详细说明
BURKERT流量计由声波换能器、电子线路及流量显示和累积系统三部分组成。声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。声波发射换能器将电能转换为声波能量,并将其发射到被测流体中,接收器接收到的声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。声波流量计常用压电换能器。它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生声波振劝。声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。
BURKERT流量计以科氏力为基础,在传感器内部有两根平行的T型振管,中部装有驱动线圈,两端装有拾振线圈,变送器提供的激励电压加到驱动线圈上时,振动管作往复周期振动,工业过程的流体介质流经传感器的振动管,就会在振管上产生科氏力效应,使两根振管扭转振动,安装在振管两端的拾振线圈将产生相位不同的两组信号,这两个信号差与流经传感器的流体流量成比例关系。计算机解算出流经振管的流量。不同的介质流经传感器时,振管的主振频率不同,据此解算出介质密度。安装在传感器器振管上的铂电阻可间接测量介质的温度。流量计安装正确是*运行的关键。应注意:1、夹带汽泡。用于液体流量测量时,当雾沫状气体含量过1%~5%的体积含量时,流量计将停止工作。这些汽泡衰减了用以产生科氏力的流量管的振动,应将气体消除在传感器之前。如果难以实现,则尽量减少气体含量(尽可能提高传感器内的压力),以保证汽泡被均匀地分散为较小的汽泡(保持较高的液体流速)。当液体的压力低于其蒸汽压时,将产生汽泡。由流量管的几何形状和液体流动所引起的传感器两端的压降能够将液体的有效压力降至其蒸汽压力之下,管道液体中的气体可对传感器产生与雾沫汽泡相同的影响。传感器尺寸一旦确定,即可计算出维持液体状态所需的背压。
BURKERT流量计工作原理: 声波在流动的流体中传播时就载体流速的信息。因此通过接收到的声波就可以检测出流体的流速,从而换算成流量。声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种。根据对信号检测的原理,目前声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型。其中以噪声法原理及结构总线简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为:Z法(透过法)、V法(反射法)、X法(交叉法)等。波束偏移法是利用声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大.