SMC组合组合气缸般指气缸与液压缸相组合形成的气-液阻尼缸
SMC 气缸所设缓冲装置种类很多,上述只是其中之,当然也可以在气动回路上采取措施,达到缓冲目的。 组合组合气缸般指气缸与液压缸相组合形成的气-液阻尼缸、气-液增压缸等。*,通常气缸采用的工作介质是压缩空气,其特点是动作快,但速度不易控制,当载荷变化较大时,容易产生“爬行”或“自走”现象;而液压缸采用的工作介质是通常认为不可压缩的液压油,其特点是动作不如气缸快,但速度易于控制,当载荷变化较大时,采用措施得当,般不会产生“爬行”和“自走”现象。把气缸与液压缸巧妙组合起来,取长补短,即成为气动系统中普遍采用的气-液阻尼缸。气-液阻尼缸工作原理见图42.2-5。实际是气缸与液压缸串联而成,两活塞固定在同活塞杆上。液压缸不用泵供油,只要充满油即可,其进出口间装有液压单向阀、节流阀及补油杯。当气缸右端供气时,气缸克服载荷带动液压缸活塞向左运动(气缸左端排气),此时液压缸左端排油,单向阀关闭,油只能通过节流阀流入液压缸右腔及油杯内,这时若将节流阀阀口开大,则液压缸左腔排油通畅,两活塞运动速度就快,反之,若将节流阀阀口关小,液压缸左腔排油受阻,两活塞运动速度会减慢。这样,调节节流阀开口大小,就能控制活塞的运动速度。可以看出,气液阻尼缸的输出力应是气缸中压缩空气产生的力(推力或拉力)与液压缸中油的阻尼力之差。
①干式缸套的特点是SMC气缸套外表面不与冷却液接触。为了获得与缸体间足够的实际接触面积,保证散热效果和缸套的定位,干式缸套外表面和与其相配合的气缸体承孔内表面都有较高的加工精度,而且一般都采用过盈配合。另外,干式缸套壁薄,有的只有lmm厚。干式缸套外圆下端制有不大的锥角,以便压缸体。其顶部(或缸体承孔的底部)有带凸缘和不带凸缘两种。带凸缘的过盈配合量较小,因为凸缘可帮助其定位。 干式缸套的优点是不易漏水、缸体结构刚度大、不存在穴蚀、缸心距小、机体小;缺点是修理更换不便、散热效果差等。在缸径小于120mm的发动机中,由于其热负荷较小而得到广泛应用。值得一提的是,目前国外车用柴油机的干式缸套发展很快,因为它的上述优点比较突出。
1)气缸的输出力 气缸理论输出力的设计计算与液压缸类似可参见液压缸的设计计 算.如双作用单活塞杆气缸推力计算如下: 理论推力(活塞杆伸出) Ft1=A1p (13-1) 理论拉力(活塞杆缩回) Ft2=A2p 式中 (13-2) Ft1Ft2——气缸理论输出力(N) ; A1A2——无杆腔有杆腔活塞面积(m2) ; p — 气缸工作压力(Pa) . 实际中 由于活塞等运动部件的惯性力以及密封等部分的摩擦力 活塞杆的实际输出力 小于理论推力称这个推力为气缸的实际输出力. 气缸的效率 η 是气缸的实际推力和理论推力的比值即 F η= Ft (13-3) 以 F = η ( A1 p ) (13-4) 气缸的效率取决于密封的种类气缸内表面和活塞杆加工的状态及润滑状态.此外气 缸的运动速度排气腔压力外载荷状况及管道状态等都会对效率产生一定的影响.smc日本smc气缸选型手册 2) 负载率β 从对气缸运行特性的研究可知 要确定气缸的实际输出力是困难的. 于是在研究气缸性能和确定气缸的出力时常用到负载率的概念.气缸的负载率β定义为 β= 气缸的实际负载
SMC组合组合气缸般指气缸与液压缸相组合形成的气-液阻尼缸