周颖
安科瑞电气股份有限公司 上海嘉定 201801
摘 要:针对国内光伏发电监控系统的研究现状,文中提出了基于云平台的光伏发电监控体系。构建基于B/S架构的数据实时采集与推送,以SSH(struts+spring+hibernate)作为Web开发框架,开发基于云平台的光伏发电远程监控系统。在平台部署过程中,通过合理设计SQLServer数据库,结合本地数据库和云端数据库,实现数据的云端存储、计算和调用。通过设计人机交互界面,将数据通过报表等多种可视化方式展现出来。实际系统的测试应用说明文中设计的监控系统能够实现多个光伏电站系统的综合管理,提高光伏电站远程监控的质量和效率。关键词:光伏发电;分布式光伏远程监控;物联网;光伏发电运维;云平台
0、引言
随着分布式光伏电站的大量接入,光伏电站的管理越来越困难。针对大规模光伏电站并网接入的监控问题,国内外学者与企业开展了大量的研究,也取得了相应的成果和开发相关的产品。近年来,云计算技术逐渐兴起,其应用模式和传统几种模式不同,具有共享池化的资源、自助服务按需付费等特点,通过管理中间件系统进行资源的整合,提升效率。本文基于B/S架构的数据实时采集与推送,以SSH为Web框架,开发了基于云平台的光伏发电远程监控系统。为解决光伏站点分布不均、发电站监控数据量大等实际问题,通过云计算技术在云端实现对多种类、多站点的电流、电压等数据进行实时监控与分析,确保系统运行的稳定性。通过合理设计SQLServer数据库,结合本地数据库和云端数据库,实现数据的云端存储、计算和调用,提高计算的实时性。利用友好的人机界面,将数据通过报表等多种可视化方式展现,提高系统可用性和操作方便性。
1、光伏发电系统
光伏发电系统是一种利用光伏电池元件将太阳能转化为电能的装置。太阳能电池板是光伏发电系统中的核心部分,它能将太阳能转换为电能,同时利用串联和并联的形式提高光伏发电系统的并网电压和并网容量以达到并网的条件。由于光伏发电系统的波动性和间歇性,为保证光伏发电系统的稳定输出,光伏电站都配置一定容量的储能装置,以提高光伏电站输出的平稳性。因此,在实际光伏电站系统中需配置控制器对蓄电池的充放电情况进行控制以保证储能保障蓄电池的正常使用。光伏发电系统结构如图1所示。
光伏发电系统的主要由光伏阵列、蓄电池、控制器和逆变器组成。
2、云计算平台架构
面对客户日益增长的需求,本系统还可以根据业务的变化向外扩展,提供更多的资源。云计算的使用大大降低了硬件的购买和维护费用,并且可以与本地的IT设施协同使用,使得用户能够整合式地体验从本地到云端的管理、虚拟化、存储和开发的过程,云平台架构如图2所示。
3、监控系统设计
3.1光伏发电监控系统体结构
本文设计一种采用WindowsAzure和Web相结合的*光伏发电监控系统。系统分为四层:应用层、服务层、设备驱动层、数据层,不同层处理不同数据,各层彼此结合形成面向用户的系统功能。用户与系统的交互主要在应用层进行,用户的需求在应用层都会直观的形式展示,用户操作指令和信息会录入到应用层,再将这些信息交由服务层处理。整个业务的信息数据处理、运算和控制是在服务层进行。与设备间的通讯由驱动层完成,并获取设备的数据并进行转换格式的操作,保证系统能够正常识别。客户端现场设备的信息通信是双向的,即将信息以设备能够辨识的格式发送给设备,保证系统能够正常向下层设备传递信息,如图3所示。
3.2光伏发电监控系统模块
本监控系统对采集到的各类电站数据进行分析,系统模块主要包括数据采集模块、数据通信模块、数据库和监控终端四个模块。
3.2.1数据采集模块
数据采集模块采集光伏电站实时运行数据,光伏电站运行过程中涉及各类数据,包括:光伏阵列、逆变器、环境监测仪、计量器等。另外,除了设备本身直接获取的基础数据外,还有部分数据需要通过基本数据衍生计算。数据采集模块结构如图4所示。
3.2.2数据通信模块
3.2.3数据库模块
3.2.4监控终端
现场监控主要由数据采集模块、上位机、数据传输通道、数据库构成。光伏组件上装有各类的传感器,电压、电流等数据通过传感器送到数据集中模块,经信号调节电路滤波处理后将数据进行归类分析,现场通过RS-485接口实现数据的传输和存储。现场监控显示各种元器件数据、发电量、报警、报表等信息。同时,也可以通过命令实现对模块的控制,比如:模块参数、分合闸信息等。现场监控结构如图5所示。
现场数据监控终端可以向工作人员提供电站的实时数据信息和历史数据信息,展示电站的运行状态,终端监控功能如图6所示。
本地数据通过上位机接收存储到数据库,利用Eclipse平台配置和部署云环境,将本地数据库转移至云存储中,实现云端数据库和前台界面的数据交互,用户可以在浏览器上方便地查询各地站点的信息。远程B/S服务体系结构图7所示。
4、安科瑞分布式光伏运维云平台介绍
4.1概述
AcrelCloud-1200分布式光伏运维云平台通过监测光伏站点的逆变器设备,气象设备以及摄像头设备、帮助用户管理分散在各地的光伏站点。主要功能包括:站点监测,逆变器监测,发电统计,逆变器一次图,操作日志,告警信息,环境监测,设备档案,运维管理,角色管理。用户可通过WEB端以及APP端访问平台,及时掌握光伏发电效率和发电收益。
4.2应用场所
广大农村屋顶的户用光伏和工商业企业屋顶光伏,这两类分布式光伏电站今年都发展迅速。
4.3系统结构
在光伏变电站安装逆变器、以及多功能电力计量仪表,通过网关将采集的数据上传至服务器,并将数据进行集中存储管理。用户可以通过PC访问平台,及时获取分布式光伏电站的运行情况以及各逆变器运行状况。平台整体结构如图所示。
4.4系统功能
AcrelCloud-1200分布式光伏运维云平台软件采用B/S架构,任何具备权限的用户都可以通过WEB浏览器根据权限范围监视分布在区域内各建筑的光伏电站的运行状态(如电站地理分布、电站信息、逆变器状态、发电功率曲线、是否并网、当前发电量、发电量等信息)。
4.4.1光伏发电
4.4.1.1综合看板
4.4.1.2电站状态
4.4.1.3逆变器状态
4.4.1.4电站发电统计
4.4.1.5逆变器发电统计
4.4.1.6配电图
4.4.1.7逆变器曲线分析
4.4.2事件记录
4.4.3运行环境
4.5系统硬件配置
4.5.1交流220V并网
交流220V并网的光伏发电系统多用于居民屋顶光伏发电,装机功率在8kW左右。
部分小型光伏电站为自发自用,余电不上网模式,这种类型的光伏电站需要安装防逆流保护装置,避免往电网输送电能。光伏电站规模较小,而且比较分散,对于光伏电站的管理者来说,通过云平台来管理此类光伏电站非常有必要,安科瑞在这类光伏电站提供的解决方案包括以下方面:
4.5.2交流380V并网
根据*电网Q/GDW1480-2015《分布式电源接入电网技术规定》,8kW~400kW可380V并网,出400kW的光伏电站视情况也可以采用多点380V并网,以当地电力部门的审批意见为准。这类分布式光伏多为工商业企业屋顶光伏,自发自用,余电上网。分布式光伏接入配电网前,应明确计量点,计量点设置除应考虑产权分界点外,还应考虑分布式电源出口与用户自用电线路处。每个计量点均应装设双向电能计量装置,其设备配置和技术要求符合DL/T448的相关规定,以及相关标准、规程要求。电能表采用智能电能表,技术性能应满足*电网公司关于智能电能表的相关标准。用于结算和考核的分布式电源计量装置,应安装采集设备,接入用电信息采集系统,实现用电信息的远程自动采集。
部分光伏电站并网点需要监测并网点电能质量,包括电源频率、电源电压的大小、电压不平衡、电压骤升/骤降/中断、快速电压变化、谐波/间谐波THD、闪变等,需要安装单独的电能质量监测装置。部分光伏电站为自发自用,余电不上网模式,这种类型的光伏电站需要安装防逆流保护装置,避免往电网输送电能,系统图如下。
这种并网模式单体光伏电站规模适中,可通过云平台采用光伏发电数据和储能系统运行数据,安科瑞在这类光伏电站提供的解决方案包括以下方面:
4.5.310kV或35kV并网
此类分布式光伏装机容量一般比较大,需要通过升压变压器升压后接入电网。由于装机容量较大,可能对公共电网造成比较大的干扰,因此供电部门对于此规模的分布式光伏电站稳控系统、电能质量以及和调度的通信要求都比较高。光伏电站并网点需要监测并网点电能质量,包括电源频率、电源电压的大小、电压不平衡、电压骤升/骤降/中断、快速电压变化、谐波/间谐波THD、闪变等,需要安装单独的电能质量监测装置。
上图为一个1MW分布式光伏电站的示意图,光伏阵列接入光伏汇流箱,经过直流柜汇流后接入集中式逆变器(直流柜根据情况可不设置),经过升压变压器升压至10kV或35kV后并入中压电网。由于光伏电站装机容量比较大,涉及到的保护和测控设备比较多,主要如下表:
5、结束语
针对目前的光伏发电监控系统在大规模光伏电站并网监控方面存在的不足,本文提出了基于云平台的光伏发电系统监控系统平台。通过分析现有的监控系统采用的技术架构,充分利用云技术的集中处理和存储扩展性,降低了硬件设施的经济成本,有利于后期系统的维护等特点。通过分析光伏监控系统数据采集模块、研究光伏电站逆变器通讯、环境监测仪、数据集中器等硬件结构以及通信连接方法,设计了基于Modbus通信协议的上位机与各设备间的主从控制系统,达到将采集模块采集的数据上传至上位机以及云平台的目的。基于实际光伏电站的应用验证了系统的可行性与可靠性
参考文献
[1]马立红.方连航.庞松岭.钱欣.程述成.蔡昌春.基于云平台的光伏监控系统设计与实现[J].信息技术,2019年第1期
[2]金红光.隋军.可再生能源的热利用与综合利用[J].科学刊,2016,31(2):208-215
[3]安科瑞企业微电网设计与应用手册.2022.05版
作者介绍:
周颖,女,本科,安科瑞电气股份有限公司,主要研究方向为智能电网供配电