原子力显微镜(AFM)特别适合作为锂离子电池研究的工具,以解决提高电池容量、电能密度、寿命和安全性的关键挑战。从根本上讲,电池是一种电化学结构, AFM 可以直接在原位操作中探测电极表面的变化,甚至可以测量局部电化学活性的变化。例如,使用 AFM 对高容量锂离子阳极进行研究可以帮助了解固体电解质界面(SEI)层的演变和降解,这种演变和降解限制了电能密度和电池寿命。在阴极处,相关的电学和机械特性可以量化成分分布,表征导电率变化,并*确定限制电池容量的非活性金属氧化物晶粒。*,在拉伸台上对分离膜进行AFM成像,可对枝晶生长导致灾难性破坏时的断裂机理提供深入了解。
在存在电解质的情况下,能够原位测量局部电化学活性和表面导电率,这对于表征其它能量存储和转换方法(如级电容器、燃料电池和太阳能)也同样有用。
采用 DCUBE-TUNA 研究锂金属氧化物、聚合物粘合剂和导电碳纳米颗粒构成的电池正极:(a)表面形貌;(b)对区分不同畴结构的表面刚度进行定量化;(c)定量化模量图;(d)TUNA电流切片。
主要功能:
1、使用 EC-AFM 在阳极充电循环过程中进行原位操作表征
2、使用 PeakForce QNM® 对高容量阳极上的 SEI 层进行定量研究
3、使用 PeakForce SECM® 直接探测局部电化学活动
4、采用 DataCube® 模式进行多模式阴极表征
5、EC-AFM、SECM 及手套箱集成的全方位解决方案
阳极 – 原位操作成像
锂离子电池的寿命很大程度上取决于钝化 SEI 层的形成和演变。所面临的挑战在于电池充放电期间电极体积会发生很大变化,从而导致 SEI 层发生相当大的变形,特别是对于高容量阳极。理想的实验是在电池工作状态中直接探测脆弱的 SEI 层,这种灵巧的操作曾被认为是非常困难的。此处显示的一组图像就采用了上述操作,来自与布朗大学的 Sheldon 小组合作的成果。图中显示了采用 PeakForce QNM 在配有电化学电池的 Dimension Icon® 一体式手套箱中观察到的图案化 Si 阳极。实验首次直接观察到锂化过程中 SEI 层中裂纹的形成。对多个充放电周期的力降解进行跟踪,结果表明初始裂纹无法完全修复,这与之前的猜测相矛盾。
SEI 层断裂和脱黏的原位观察。
阴极 – 多模式表征
锂离子阴极是一种复杂的异质混合物,其所包含的金属氧化物颗粒用于在放电状态下存储锂离子,由混有碳黑材料的可适应体积变化的聚合物粘合剂材料所包覆,以保持高导电率,从而保持高电能密度的能力。此处的图像系列显示了 Dimension Icon XR 上的 DataCube SSRM 如何帮助组元分布成像并揭示颗粒间剧烈的变化。此处DataCube模式下可用的模量图将硬质金属氧化物颗粒与周围的软粘合剂区清晰地区分开来,而同时获得的导电率图则揭示了碳黑分布的不均一性。可以看到,图像顶部边缘附近的一个颗粒未被碳黑覆盖,并且从同一数据立方体提取的一组导电率图像将该颗粒识别为已失活,即在整个工作电压范围内处于非活动状态。
在选定采样电压范围下,锂金属氧化物构成的电池正极TUNA 电流切片连续成像。扫描区域为 15x15 μm²。
相关产品
Dimension XR原子力显微镜
全套AFM系统,为*材料研究提供的、*的模式和能力。
Dimension Icon原子力显微镜
大样品台原子力显微镜为科学和工业界的纳米科技研究人员带来*水平的性能、功能和易操作性。