西门子6ES7221-3AD30-0XB0现货
西门子6ES7221-3AD30-0XB0现货
西门子PLC系列应用广泛,在各种工业自动化控制领域都有应用。其中西门子PLC S7-1200系列是一种中小型的控制系统,它有自身的特点和优势。目前在工业自动化控制系统中,西门子PLC S7-1200系列应用广泛,为控制系统的稳定运行提供了有力保证。本文下面对西门子PLC S7-1200系列的组成和特点做一个介绍,供用户在配置时进行参考。
西门子PLC S7-1200系列组成
西门子PLC S7-1200系列的组成
SIMATIC S7-1200是SIMATIC S7可编程控制器系列中的模块化微型 PLC,其组成有:
(1)控制器,带有集成PROFINET接口,用于编程设备、HMI或其它 SIMATIC 控制器之间通信;
(2)信号板,可直接插入到控制器;
(3)信号模块,用于扩展控制器输入和输出通道;
(4)通信模块,用于扩展控制器通信接口;
(5)附件,如电源、开关模块及SIMATIC存储卡
西门子PLC S7-1200系列的特点
(1)CPU上面集成以太网接口
(2)CPU供电范围广,AC或DC电源形式集成的电源 (85 - 264 V AC 或 24 V DC)
(3)集成数字量输出24V DC或继电器,集成 24V DC数字量输入,集成模拟量输入0-10V;
(4)具有频率高达100 kHz的脉冲序列输出,频率高达100 kHz的脉宽调制输出,频率高达100 kHz的高速计数器;
(5)通过扩展附加的通信模块,例如:RS 485模块,实现了模块化特点,通过信号板直接在CPU上扩展模拟量或数字量信号实现了模块化特点,同时保持 CPU 原有空间,为用户在装配过程中节省了空间;
(6)通过信号模块的大量模拟量和数字量输入和输出信号实现模块化特点;
(7)用户可选择多种不同容量的存储卡,来实现程序下载,数据存储等功能;
(8)具有运动控制功能,可以用于简单的运动控制;具有带自整定功能的 PID 控制器;
(9)该系列PLC具有实时时钟,密码保护,时间中断,硬件中断,库功能,在线/离线诊断功能,并且所有模块上的端子都可拆卸,方便用户进行安装和接线。
本文介绍了西门子PLC S7-1200系列的组成和特点,您可以参考本文提供的内容,根据项目需求进行合理选择,配置出合适的方案。如果需要更多的了解西门子PLC系列的相关用法,请联系我们,上海励辉会更好的提供相关技术支持。对本文有任何问题也可以在下方留言分享
以完善的北斗卫星通讯定位系统、GPRS通信网络以及各种搭载传感器设备等技术平台为依托,具有测量风、温、湿、压等气象参数和采集海流、盐度、化学及其它所需的海洋水文参数,目位,紧急警情上报,信息发送,统计报表等完善功能的测报仪器设备的研发有着更加广阔的应用前景。本文提出了一种双向通信电路系统设计方案。具有低功耗、微型化、接口丰富、可靠性高等特点,可提供船舶定位、海上通信、遇险求救等多种功能服务,可提升安全防范能力,因而对相关行业主管部门具有重要意义。
ARM9处理器S3C2440A
基于ARM920T内核的S3C2440A作为系统中央处理器,配备128M的SDRAM,256M的NAND FLASH和16M的NOR FLASH,以应对嵌入Linux操作系统所消耗的内存。S3C2440A集成了MMC/SD卡读写控制器,LCD与触摸屏接口,3路UART串口,1路主控与1路从动USB接口,1个IDE接口可挂接大容量硬盘,实时时钟,AC‘97音频接口、多至130个通用IO口等众多硬件资源。S3C2440A内部集成的3路串口可通过外接简单的RS232电平转换芯片,分别连接北斗卫星通讯定位终端、GPRS模块和风传感器。此外,ARM9处理器S3C2440A通过内部集成的两路SPI接口可外接16位ADC,以外接温度、湿度、盐度、压力等传感器。S3C2440A的通用IO口作为开关量输入检测和输出控制接口,并可根据用户需求进行扩展。与此同时,S3C2440A 还可满足连接以太网控制器,USB外设,电子罗盘、海流计、水声传输等可扩展应用需求。
北斗卫星通讯模块电路设计
北斗卫星通讯模块电路的设计可以从信号接收、信号处理及功能界面显示三个层次加以展开,相对应采用高的北斗卫星通讯终端,并设计出串口通讯电路与 LCD液晶显示电路。北斗卫星通讯模块可选用UM220模块,该模块支持北斗二代(BD2)与GPS双系统导航授时,具有尺寸小(仅 40×30×3.7mm)、功耗低(仅350mW)、集成度高等优点,该模块三维定位精度为3m,速度精度为0.1m/s,数据更新率可达1Hz。UM220还配有卫星显控软件CDT(Control&Display Tool),该软件提供简约的图形用户界面,可便捷地控制卫星接收机并进行功能能够设置,获取所需信息。北斗卫星通讯模块电路主要包括 UM220接口、天线、后备电源、复位及串口通讯电路,其电路原理图如图4所示。ARM9处理器S3C2440A的串口0引脚TXD0、RXD0与 UM220的RXD3、TXD3相连接构成串口通讯电路。S3C2440A的引脚GPE0与UM220的PPS引脚连接,可接收UM220输出的脉宽与极性可调的PPS信号;S3C2440A的引脚GPE1可编程。
输出脉宽与极性可调的事件信号提供给UM220的EVENT引脚。UM220供电电源引脚VCC与GND间并联有电解电容CT1和陶瓷电容C1,以滤除高频与低频杂波信号,使得UM220供电电源稳定纯净,且电压峰峰值不过50mV。UM220具有授时功能,为维持系统时钟,UM220的VBAT引脚经限流电阻R1与压降二极管D2、 D3接有3V锂电池。其中,二极管D3压降0.3V,而D2压降0.7V,以确保UM220的VBAT引脚平时由主电源3.3V供电,而主电源失电时,则由后备电源3V锂电池供电。UM220的GNSS_ANT引脚在PCB电路板需要布线50Ω以匹配天线阻抗,然后外接北斗卫星蜂窝天线。此外,电阻R2、 R3与电容C2及二极管D1构成稳定的低电平复位电路,且低电平保持时间大于2ms。
GPRS模块电路设计
测报仪主要依赖卫星通讯网络进行数据通讯与定位,为降低测报仪系统功耗及运营成本,则可选用GPRS/CDMA网络进行远程通讯。GPRS模块外围应用电路设计包括模块启动电路、数据通信电路、语音通信电路及SIM卡应用电路。GPRS模块可选用西门子公司的MC55。MC55是西门子公司推出的新一代。
无线通信GPRS模块,可以快速可靠地实现系统方案中的数据、语音传输、短消息服务和传真,模块结构紧凑,重量轻,内置TCP/IP协议找,由AT指令控制可使应用程序很容易地接入网络。GPRS模块电路主要包括MC55接口、SIM卡电路、启动电源及与S3C2440A连接的串口通讯电路,其电路原理图如图5所示。S3C2440A串口1的RXD1,TXD1引脚与MC55的TXD0、 RXD0引脚连接构成串口通讯电路。MC55的CCGND、CCIN、CCREST、CCIO、CCVCC与CCCLK引脚组成SIM卡接口,并接有滤波电容C4、C5。MC55的供电电源VBATT由5V经二极管D2降压得到。S3C2440A的GPE3驱动控制MC55的IGT引脚,使其进入正常工作模式;S3C2440A的GPE2可检测MC55的RING引脚输出的脉冲信号,以决定系统是否休眠进入低功耗状态。为了在有GPRS数据信息传送时产生同步信号,可通过配置MC55的SYNC引脚控制发光LED状态指示来实现。当有数据发送时,SYNC引脚输出高电平使得三极管T1基极导通,则红色发光二极管LED1被点亮。
16位ADC电路设计
S3C2440A可通过自身的SPI接口级联多片高精度快速16位ADC芯片,以实现温度、湿度、盐度、压力等多种传感器模拟信号的采集与数据转换。16位ADC芯片选用ADI公司的AD7798,AD7798具有适合高精度测量应用的低功耗、低噪声、完整模拟前端,内置一个低噪声16位Σ-Δ型ADC,其中含有3个差分模拟输入,还集成了片内低噪声仪表放大器,因而可直接测量输入小信号。图6中给出了S3C2440A通过SPI接口连接1片AD7798,用以测量
图6 AD7798电路原理图
温度、压力及盐度数据的电路原理示意图。S3C2440A的SPICLK1、SPIMOSI1、SPIMISO1与GPE4引脚构成SPI接口分别连接AD7798的串行时钟(SCLK)、数据输入(DIN)、数据输出(DOUT) 和片选。以AD7798的第3模拟通道测量温度为例,热敏电阻与3个精密电阻R14、R15、R16构成不平衡电桥,输出的差分小信号经R18、C13、 R17、C14及C12构成的双路RCπ型一阶低通滤波电路,连接AD7798的AIN3+与AIN3-引脚。
GPRS在移动用户和远端的数据网络(如TCP/IP、X125等网络)之间提供一种连接,从而给用户提供高速无线IP和无线X125业务。GPRS有其无可比拟的优越性,它采用分组交换技术,每个用户可同时占用多个无线信道,同一无线信道又可以由多个用户共享,因此信道资源被有效地利用。利用GPRS技术实现数据分组发送和接收,用户可以永远在线,且费用按数据流量计算,而与通信时长无关,这样可以使得服务成本大大降低,减轻了用户的经济负担[3]。本文介绍一种基于GPRS技术研制的便携式多参数移动监护仪,可实时检测人体的心电信号、心率、血氧饱和度、无创血压、呼吸频率和体温等重要参数,实现对各参数的报警、信息存储和传输。本监护仪具有覆盖范围广、成本低、永远在线等特点,特别适用于户外急救。
2系统硬件设计
移动监护仪(系统结构如图1所示)移动单元的硬件设计建立在Winbond公司的W78E58B单片机的基础上,通过扩展外围电路,实现了对生理参数数据的采集、键盘操作、生理参数LCD显示、自动报警、GPS信息获取以及与监护中心无线通信等功能。
图1移动监护仪系统结构
2.1信号调理模块:该模块主要由心电、血氧、体温、血压模块的传感器、信号调理电路、A/D转换电路组成。信号调理电路主要实现信号的放大、滤波、陷波等处理,然后送入12位的AD574进行A/D转换,得到的数字信号从串口进入单片机。
2.2报警电路模块:监护仪把实时采集的信号进行分析,结果与设定阀值比较,实现报警。用户收到报警信号后,操作键盘将异常信号通过GPRS送到监护中心进行分析。
2.3液晶显示模块:采用G191液晶模块,点阵数为192×128,点尺寸为0.33×0.33mm,点距为0.04mm,驱动电源为+5V和-20V。液晶控制器采用SED1335,该控制器用于接收来自单片机的各种指令和数据,产生相应的时序对液晶屏进行控制显示。
2.4GPS模块:GPS采用GARMIN公司GPS25-LVS系列OEM模块,是目前应用广泛的GPS接收处理板,采用单一5V供电,内置保护电池,NMEA01832.0格式输出,默认波特率为4800,1个起始位,8个数据位,1个停止位,无奇偶校验。
2.5GPRS模块:当用户处于异常状况时,监护仪通过GPRS向监护中心发送异常信号。GPRS模块通过串口与单片机通讯,以完成数据收发、控制等功能。仪器向GPRSModem(工作原理如图2所示)所示发送工作指令和数据时,数据经IP模块进行TCP/IP协议转换,打成IP数据包,由MC35模块以GPRS数据包形式发送出去,该模块内置西门子公司的MC35模块、IP模块[4]。
图2GPRSModem 工作原理
3系统软件设计
采用混合编程方式编写系统程序,主程序采用C语言,各子程序采用汇编语言,主程序主要完成各模块的初始化,分配协调各模块使用系统资源,按键检测以及控制报警,各子程序分别实现各自相对独立功能,系统控制流程如图3所示。
图3系统控制流程
由于人体生理信号变化缓慢,为了确保数据采集的高精度和准确性,数据采集程序进行多通道、多采样点的流程设计[5]。液晶显示心电波形时,横轴代表时间,每1mm代表0.04s(标准走纸速度25mm/s),纵坐标代表波形幅度大小,每1mm代表0.1mv。还需要注意的是,为了消除LCD显示图形的间断现象,我们采用如下处理方法:根据前后采样点幅值差来调用向上画线和向下画线程序,若y(i)表示前一个采样点幅值,y(i+1)表示后一个采样点幅值,当y(i+1)>y(i),调用向上画垂线子程序;西门