SMC电磁阀的动作不稳定的故障现象和原因如下
1.气源压力不稳定。①压缩机容量太小;②减压阀故障。
2.信号压力不稳定。①控制系统的时间常数(T=RC)不适当;②调节器输出不稳定。
3.气源压力稳定,信号压力也稳定,但调节阀的动作仍不稳定。①定位器中放大器的球阀受脏物磨损关不严,耗气量特别增大时会产生输出震荡;②定位器中放大器的喷咀挡板不平行,挡板盖不住喷咀;③输出管、线漏气;④执行机构刚性太小;⑤阀杆运动中摩擦阻力大,与相接触部位有阻滞现象。
三)SMC电磁阀振动。故障现象和原因如下:
1.SMC电磁阀在任何开度下都振动。①支撑不稳;②附近有振动源;③阀芯与衬套磨损严重。
2.SMC电磁阀在接近全闭位置时振动。①调节阀选大了,常在小开度下使用;②单座阀介质流向与关闭方向相反。
四)SMC电磁阀的动作迟钝。迟钝的现象及原因如下:
1.阀杆仅在单方向动作时迟钝。①气动薄膜执行机构中膜片破损泄漏;②执行机构中“O”型密封泄漏。
2.阀杆在往复动作时均有迟钝现象。①阀体内有粘物堵塞;②聚四氟乙烯填料变质硬化或石墨一石棉填料润滑油干燥;③填料加得太紧,摩擦阻力增大;④由于阀杆不直导致摩擦阻力大;⑤没有定位器的气动调节阀也会导致动作迟钝。
五)调节阀的泄漏量增大。泄漏的原因如下:
1.阀全关时泄漏量大。①阀芯被磨损,内漏严重,②阀未调好关不严。
2.阀达不到全闭位置。①介质压差太大,执行机构刚性小,阀关不严;②阀内有异物;③衬套烧结。
六)流量可调范围变小。主要原因是阀芯被腐蚀变小,从而使可调的小流量变大。
日本SMC电磁阀为研究对象,对调节阀中存在的非线性进行检测和诊断。调节阀中的非线性主要是由摩擦引起的,因此这个非线性检测和诊断过程就是确定调节阀中的非线性是否由摩擦导致的。
3 非线性检测与诊断方法
典型的信号处理工具利用一阶矩和二阶矩,如均值、方差。这种工具主要用来分析线性过程的信号,对于非线性信号,这种方法就显得无能为力。高阶统计量(即二阶以上的统计量,一般包括高阶矩、高阶累积量以及它们的谱---高阶矩谱和高阶累计量这四种统计量)的方法就能够很容易地解决这些问题,它是分析非线性信号有用的工具。本文中高阶统计量(12)用来检测和诊断控制阀的非线性。
3.1 日本SMC电磁阀双相干谱简介
存在非线性阀的控制回路产生非高斯性和非线性时间序列。Choudhury在2003年,提出根据控制误差信号(SP2PV)的非高斯性和非线性作为确定控制回路性能的方法。这种方法利用标准重谱或双相干谱的灵敏度检测信号的非线性。非线性时间序列的一个显着特点是出现相位耦合,一个频率下的相位需要由其它频率的相位来决定。相位耦合时高阶谱所具有的特性可以通过信号的双相干谱检测。
如果扰动是可以测量的,这种方法可以用来检验干扰是否是线性的。基于高阶统计量的NGI和NLI指数计算方法简单,如果回路具有非线性行为,则需要将其隔离做进一步的诊断。控制回路被确定存在非线性以后,需要诊断出导致其非线性的原因。在作了上面的一些假设以后,可以推测控制阀有可能导致控制回路的非线性。接下来是诊断控制阀的非线性是由摩擦还是由其它的原因引起的。PV2OP坐标图可以解决这个问题。它可以对数据的时间序列进行定性分析,使用基于高阶统计的NGI和NLI指数检测阀的非线性问题,然后用PV2OP坐标图诊断导致非线性的原因。
4 仿真研究
日本SMC电磁阀选取被控对象模型为:
理想情况下,控制阀的摩擦引起的非线性是忽略的,其过程的趋势曲线如图3(a)所示。采用图1所示的反馈控制,控制器使用常规的线性PID控制,日本SMC电磁阀使用数据驱动模型来模拟实际的控制阀,数据驱动模型的参数设置为:S=5,J=2。其中S表示死区加粘连,J表示滞跳。通过仿真来得到PV和OP的时间序列,为分析控制阀的非线性提供数据。由于控制阀的模型是非线性的,导致整个控制系统是非线性的,而采用的控制器是线性的,这种非线性导致过程出现震荡
SMC电磁阀的动作不稳定的故障现象和原因如下
