盐城西门子变频器华东代理商

来源:上海庆惜自动化设备有限公司
发布时间:2018-11-11 14:28:33

                      盐城西门子变频器华东代理商


变频器+电动机使用中必须了解的17个问题

电动机是目前为止使用频率高的旋转工具了,随着变频器的发展和普及,越来越多的电动机需要配合着变频器一起使用,可是在变频器和电动机配套使用的过程中不可避免的会遇到很多的问题,这些暴露的问题越来越值得我们深思和交流。


1,请问电机软起动器是否能节能 ?

软启动节能效果有限,但可以减少启动对电网的冲击,也可以实现平滑启动,保护电机绕组。

根据能量守恒理论 , 由于加入了相对复杂的控制电路 , 软启动不但不节能 , 还会加大能量的消耗 , 但它可以减小电路的启动电流 , 起到了保护的作用。

2,采用变频器运转时,电机的启动电流和启动转矩怎么样?

采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电 流以下 (根据机种不同,为 125%~200%)。用工频电源直接起动时,起动电流为 6~7倍, 因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动 (起动时间变长 ) 。起动 电流为额定电流的 1.2~1.5倍, 起动转矩为 70%~120%额定转矩; 对于带有转矩自动增强 功能的变频器,起动转矩为 以上,可以带全负载起动。

3,电机的过载和短路之间有什么联系吗 ?

电机的过载有两种; 1. 是机械负荷过载:是带动的负荷过额定值或者传动系统有卡阻现 象的过载,这和短路是没有什么关系的,。2. 是负荷正常:电机电流过载,这就可能是电机 绕组有局部对地,匝间之间的短路现象。

4.变频调速在什么上应用 ? 有什么好处 ?

变频调速在什么上应用 ?

对有调速要求的转动机械上都能应用。

变频调速有什么好处 ?

在变频调速实现之前(理论上早已实现,但是真正实现是在电力电子器件发明之后)传统调速采用直流,直流调速的缺点是:

1。直流电机结构复杂,维护成本高

2。由于换向器的存在,直流电机功率已经没有上升空间。

因此变频调速的好处在于:

1。可以使交流电机得到比直流调速一样优异的调速性能。

2。交流鼠笼式异步电机维护简单方便。

3。交流电机功率不存在换向器的限制。

5,使用 100KVA 变压器供给功率100kW电器(大为37kw )够用不?

100KVA 的变压器能带多大的负载 ? 看了下面的计算公式就知道了

P=容量 *功率因数 *80%=100*0.9*80%=72KW,一般负荷 20%运行1小时是允许的,所以够用。

主要看电流没, 100KVA 的变压器高压电流是 5.8A ,低压电流是150A ,即便偶尔的也不要紧,主要看温升别过 55度。温升等于实际温度减去环境温度。

6,请问如何测量电机的绝缘电阻?

如果是三相交流电机,测量电机三相绕组的相间和对地的绝缘电阻。

如果是直流电机,测量电机电枢绕组对地,串激绕组对地,他激绕组对地,串激绕组对他激绕组。按被测电机电压等级选择相应的摇表。

测量步骤 :

---断开电源

---对地放电

---如果是三相交流电机打开中心点(如过可以)

---如果是直流电机,提起电刷。

---用摇表分别检测相间和对地绝缘电阻

---对地放电

---恢复线路

---记录绝缘电阻,及环境温度在案。

7,什么是无刷无环起动器?

无刷无环起动器是一种克服了绕线式异步电动机装有滑环、碳刷和复杂的起动装置等缺 点,而保留了绕线电机起动电流小,起动转矩大等优点的起动设备。凡原来采用电阻起动 器、电抗器、频敏变阻器、液体变阻起动器、软起动器起动的 JR 、 JZR 、 YR 、 YZR 三相 绕线转子交流异步电动机 (变速、装有进相机的除外)均可选用 “ 无刷无环起动器 ” 来更新 换代。

8,电机的电容起动方式有几种?

有两种起动:

1、电容起动(指电机启动后电容断开);

2,电容启动并运转(电容参与启动后参与运转)。

9,变压器能作为变频器的负载吗?

从原理上讲应该是可以的,但在实际中却不实用,变频器就是不用变压器升压,也应该有可用于 380V 以上电路的品种的,如果要更高电压的,那也有直接用 220V 或 380V 直接 变频再用倍压方式取得高压的电路可以采用。变频器主要用于负载驱动(如电动机),很 少用于电源变频的,而变频器的功能远远不仅限于变频本身,还有很多的附加功能,如各类的保护等,如果用变频器来获得变频电源,从经济的角度考虑是不可取的,建议采用其 他变频电路。

10,变频器能否调至1Hz 吗,高可以调HZ 使用?

如果变频器用在一般的交流异步电机上, 变频器调至1Hz 时已经接近直流, 是不可以的,电机将运行在变频器限制内的大电流下工作,电机将会发热严重,很有可能烧毁电 机。

如果过 50Hz 运行会增大电机的铁损, 对电机也是不利的, 一般好不要过 60Hz , (短 时间内过是允许的)否则也会影响电机使用寿命。

11.变频器的频率调节电阻工作原理是什么?为什么调节电阻能改变频率?

变频器的频率调节电阻是用来把变频器的 10V 基准电压进行比例分压, 然后送回变频器的 主控板。变频器主控板再把电阻送回来的电压进行模数转换读取数据,然后再换算成额定 频率的比例值输出当前频率,因此调整电阻值即可以调整变频器的频率。

12,变频器能对电机电流解耦吗?

变频能解耦吗?不能!但它只要输出的频率 f 、同步转速 n1使得转差率保持在稳定区或者 额定转差率 Se ,就等于对电机电流解耦,因为转子功率因数此时是 1,转子电流就是大家 要解耦的要控制的转矩电流!变频器是异步电机的调速装置,它不可能越异步电机的机械特性而进行所谓的任何控制!

13,感应电动机启动时为什么电流大?而启动后电流会变小?

当感应电动机处在停止状态时,从电磁的角度看,就象变压器,接到电源去的定子绕组相 当于变压器的一次线圈,成闭路的转子绕组相当于变压器被短路的二次线圈;定子绕组和 转子绕组间无电的的联系,只有磁的联系,磁通经定子、气隙、转子铁芯成闭路。当合闸 瞬间,转子因惯性还未转起来,旋转磁场以大的切割速度 —— 同步转速切割转子绕组, 使转子绕组感应起可能达到的高的电势,因而,在转子导体中流过很大的电流,这个电 流产生抵消定子磁场的磁能,就象变压器二次磁通要抵消一次磁通的作用一样。

定子方面为了维护与该电源电压相适应的原有磁通,遂自动增加电流。因为此时转子的电流很大,故定子电流也增得很大,甚至高达额定电流的 4~7倍,这就是启动电流大的缘 由。

启动后电流为什么小:随着电动机转速增高,定子磁场切割转子导体的速度减小,转子导 体中感应电势减小,转子导体中的电流也减小,于是定子电流中用来抵消转子电流所产生 的磁通的影响的那部分电流也减小,所以定子电流就从大到小,直到正常。

14,载波频率对变频器及电机有什么影响?

载波频率对变频器输出电流有影响:

(1)运行频率越高,则电压波的占空比越大,电流高次谐波成份越小,即载波频率越高, 电流波形的平滑性越好;

(2)载波频率越高,变频器允许输出的电流越小;

(3)载波频率越高,布线电容的容抗越小(因为 Xc=1/2πfC),由高频脉冲引起的漏电 流越大。

载波频率对电机的影响:

载波频率越高,电机的振动越小,运行噪音越小,电机发热也越少。但载波频率越高,谐 波电流的频率也越高,电机定子的集肤效应也越严重,电机损耗越大,输出功率越小。

15,为什么变频器不能用作变频电源?

变频电源的整个电路由交流一直流一交流一滤波等部分构成,因此它输出的电压和电流波 形均为纯正的正弦波 , 非常接近理想的交流供电电源。 可以输出世界任何的电网电压和 频率。

而变频器是由交流一直流一交流 (调制波) 等电路构成的 , 变频器标准叫法应为变频调速器。 其输出电压的波形为脉冲方波 , 且谐波成分多 , 电压和频率同时按比例变化 , 不可分别调整 , 不符合交流电源的要求。原则上不能做供电电源的使用 , 一般仅用于三相异步电机的调速。

16,使用变频器时,电机温升为什么比工频时高呢?

因为变频器输出波形不是正弦波,而是畸形波,在额定扭矩下的电机电流比工频时要 多出约 10%左右,所以温升比工频时略有提高。

另外还有一点:当电机转速降低的时候,电机散热风扇速度不够,电机温升会高一些。

17,电机的防护等级是什么意思?

举例来说, IP23的电机指电机能够防止大于 12mm 的固体物体侵入, 防止人的手指接触到内部的零件防止中等尺寸(直径大12mm )的外物侵入。能够防止喷洒的水侵入 ,或防 止与垂直的夹角小于 60度的方向所喷洒的水进入造成损害。

IP (INTERNATIONAL PROTECTION)防护等级系统是由 IEC (INTERNATIONAL ELECTROTECHNICAL COMMISSION)所起草。将电机依其防尘防湿气之特性加以分 级。这里所指的外物含工具,人的手指等均不可接触到电机内之带电部分,以免触电。 IP 防护等级是由两个数字所组成,第 1个数字表示电机离尘、防止外物侵入的等级,第 2个数字表示电机防湿气、防水侵入的密闭程度,娄字越大表示其防护等级越高。



数字下变频器的发展和更新

很多现代无线电架构包含下变频级,可将RF或微波频段向下 转换至中频,以便进行基带处理。无论终应用是">通信应 用、航空航天与应用,或是仪器仪表应用,目标频率都 越来越高,并进入了RF和微波频谱。应对这种情况的一种可 行解决方案是使用更多的下变频级,如图1所示。而另一种更 有效的解决方案是使用集成数字下变频器(DDC)的RF ADC, 如图2所示。

        
图1. 带下变频级的典型接收器模拟信号链。将DDC功能集成至RF ADC中便不需要额外的模拟下变频级, 并允许RF频率域中的频谱直接向下变频至基带进行处理。RF ADC处理GHz频率域中频谱的能力放宽了模拟域中进行多次 下变频的要求。DDC的这种功能使频谱得以保留,同时允许 通过抽取滤波进行过滤,这样还能提供改善带内动态范围 (增加SNR)的优势。有关该话题的更详细讨论可参见:"祖父时代的ADC已成往事," 以及"千兆采样ADC确保直接RF变 频." 这些文章进一步讨论了 AD9680 和 AD9625 ,以及它们的 DDC功能。

        
图2. 使用RF ADC(集成DDC)的接收器信号链。本文主要关注AD9680(以及 AD9690, AD9691 和 AD9684)中的DDC功能。为了理解DDC功能,并了解当ADC中集成了 DDC时如何分析输出频谱,我们将以AD9680-500为例。ADI 网站上的折折频工具 将作为辅助工具使用。这款使用简单但功 能强大的工具可用来帮助理解ADC的混叠效应,这是分析集 成了DDC的RF ADC(比如AD9680)中输出频谱的步。
本例中,AD9680-500工作时的输入时钟为368.64 MHz,模拟 输入频率为270 MHz。首先,理解AD9680中数字处理模块的 设置很重要。AD9680将设为使用数字下变频器(DDC),其输 入为实数,输出为复数,数控振荡器(NCO)调谐频率设为98 MHz,半带滤波器1 (HB1)使能,6 dB增益使能。由于输出是 复数,因此复数转实数模块禁用。DDC的基本原理图如下所 示。以下内容对于了解如何处理输入信号音很重要:信号首 先通过NCO,使输入信号音的频率偏移,然后通过抽取模 块,并可选择性通过增益模块,之后再选择性通过复数转实 数模块。 图

        
图3. AD9680中的DDC信号处理模块。从宏观上把握信号流过AD9680也很重要。信号进入模拟输 入,通过ADC内核,进入DDC,通过JESD204B串行器,然后 通过JESD204B串行输出通道输出。可以参见图4中的AD9680 功能框图。

        
图4. AD9680功能框图。输入采样时钟为368.64 MHz,模拟输入频率为270 MHz,因 此输入信号将混叠进入位于98.64 MHz处的奈奎斯特区。 输入频率的二次谐波将混叠进入171.36 MHz处的奈奎斯 特区,而三次谐波混叠至72.72 MHz。这可以从图5中 折频工 具曲线看出。

        
图5. 折频工具中的ADC输出频谱。图5中显示的折频工具曲线给出了信号通过AD9680中的DDC 之前,位于ADC内核输出端的信号状态。信号通过AD9680中 的个处理模块是NCO,它会将频谱在频域中向左偏移98 MHz(记住调谐频率是98 MHz)。这会将模拟输入从98.64 MHz下移至0.64 MHz,二次谐波将下移至73.36 MHz,而三次 谐波将下移至–25.28 MHz(记住我们观察的是复数输出)。这 可以从Visual Analog的FFT曲线中看出,如下文图6所示。

        
图6. 经过DDC后的FFT复数输出(NCO = 98 MHz,2倍抽取)。
从图6中的FFT曲线中可以清楚地看到NCO如何偏移我们在折 频工具中观察到的频率。有意思的是,我们可以在FFT中看到 一个未经表达的信号音。然而,这个信号音真的没有经过表 达吗?NCO并不偏移所有频率。本例中,它将98 MHz的基频 输入信号音混叠向下偏移至0.64 MHz,并将二次谐波偏移至 73.36 MHz,将三次谐波偏移至–25.28 MHz。此外,还有另一 个信号音也发生了偏移,并出现在86.32 MHz。这个信号音的 让我们更加细致地看一下这个场景。折频工具 不包含ADC的 直流失调。该直流失调导致直流(或0 Hz)处存在信号音。 折频工具假设ADC是理想器件,无直流失调。在AD9680的实 际输出中,0 Hz处的直流失调信号音向下偏移至–98 MHz。由 于复数混频和抽取,直流失调信号音折回实数频域中的 奈奎斯特区。对于信号音偏移进入第二奈奎斯特区的复数输 入信号而言,它将会绕回至实数频域中的奈奎斯特区。 由于使能了抽取,并且抽取率等于2,我们的抽取奈奎斯特区 宽度为92.16 MHz(回忆一下:fs = 368.64 MHz,抽取采样速 率为184.32 MHz,奈奎斯特区为92.16 MHz)。直流失调信号 音偏移至–98 MHz,为92.16 MHz奈奎斯特区边界以外5.84 MHz。当该信号音绕回至奈奎斯特区时,它的失调和实 数频域中的奈奎斯特区边界相同,即92.16 MHz – 5.84 MHz = 86.32 MHz。这正是我们在上文FFT曲线中看到的信号音!因 此,技术上而言,ADC产生信号(因为它是直流失调),而 DDC略微移动它。这时候就需要进行良好的频率规划。适当 的频率规划有助于避免此类情形。
现在,我们讨论了一个使用NCO和HB1滤波器的示例,其抽 取率等于2;让我们在这个示例中再加入一点东西。现在,我 们将增加DDC抽取率,以便观察频率折叠效应以及采用较高 抽取率和NCO频率调谐时的转换情况。
本例中,我们观察采用491.52 MHz输入时钟和150.1 MHz模拟 输入频率的AD9680-500工作情况。AD9680将设为使用数字下 变频器(DDC),并采用实数输入、复数输出、NCO调谐频率 为155 MHz、半带滤波器1 (HB1)和半带滤波器2 (HB2)使能 (抽取率等于4)、6 dB增益使能。由于输出是复数,因此 复数转实数模块禁用。回顾图3中的DDC基本原理图,该图表 示信号流过DDC。同样,信号首先通过NCO,偏移输入信号 音的频率,然后通过抽取、增益模块,以及在本例中旁路复 数转实数模块。
我们将再次使用折频工具 来帮助理解ADC的混叠效应,以便评 估模拟输入频率和谐波在频域中的位置。本例中,我们有个实 数信号,采样速率为491.52 MSPS,抽取率设为4,输出复数。 在ADC的输出端,采用折频工具显示的信号如图7所示。

        
图7. 折频工具中的ADC输出频谱。输入采样时钟为491.52 MHz,模拟输入频率为150.1 MHz,因 此输入信号将残留在奈奎斯特区。位于300.2 MHz的输入 频率二次谐波将混叠进入191.32 MHz处的奈奎斯特区, 而450.3 MHz处的三次谐波混叠进入41.22 MHz处的奈奎 斯特区。这是信号通过DDC之前ADC输出端上的信号状态。
现在,让我们看一下信号如何通过DDC内部的数字处理模 块。我们将查看进入每一级的信号,并观察NCO如何偏移信 号,而抽取过程随后又是如何折叠信号的。我们将保持曲线 的输入采样速率(491.52 MSPS),fs项与此采样速率有关。让 我们观察一般过程,如图8所示。NCO将向左偏移输入信号。 一旦复数(负频率)域中的信号偏移过–fs/2,就会折回第 一奈奎斯特区。接下来,信号通过抽取滤波器HB1,抽 取率为2。在图中显示了抽取过程,但没有显示滤波器响应, 虽然这两个操作是同时发生的。这是为了简单起见。完成第 一次2倍抽取之后,fs/4至fs/2的频谱转换为–fs/4至DC的频率。 类似地,–fs/2至–fs/4的频谱转换为DC至fs/4的频率。信号现在 通过第二抽取滤波器HB2,它也是2倍抽取(抽取现在等于 4)。fs/8至fs/4的频谱将转换为–fs/8至DC的频率。类似地,– fs/4至–fs/8的频谱将转换为DC至fs/8的频率。虽然图中显示了 抽取,但没有显示抽取滤波操作。

        
图8. 抽取滤波器对ADC输出频谱的影响—一般示例。记得上一个示例中,我们讨论了491.52 MSPS输入采样速率以 及150.1 MHz输入频率。NCO频率为155 MHz,抽取率等于4 (由于NCO分辨率,实际NCO频率为154.94 MHz)。因此,输 出采样速率为122.88 MSPS。由于AD9680配置为复数混频, 我们需要在分析中包含复数频率域。图9显示了频率转换非常 繁忙,但如果仔细研究的话可以看到信号流。

        
图9. 抽取滤波器对ADC输出频谱的影响—实际示例。NCO偏移后的频谱:
基频从+150.1 MHz下移至–4.94 MHz。
基频镜像从–150.1 MHz开始偏移,并绕回至186.48 MHz。
二次谐波从191.32 MHz下移至36.38 MHz。
三次谐波从+41.22 MHz下移至–113.72 MHz。
2倍抽取后的频谱:
基频停留在–4.94 MHz。
基频镜像向下转换至–59.28 MHz,并由HB1抽取滤波器衰减。
二次谐波停留在36.38 MHz。
三次谐波由HB1抽取滤波器大幅衰减。
4倍抽取后的频谱:
基频停留在–4.94 MHz。
基频镜像停留在–59.28 MHz。
二次谐波停留在-36.38 MHz。
过滤三次谐波,并由HB2抽取滤波器几乎完全消除。图9.
现在,来看看AD9680-500的实际测量。可以看到基频位于– 4.94 MHz 。基频镜像位于–59.28 MHz , 幅度为–67.112 dBFS,意味着镜像衰减了大约66 dB。二次谐波位于36.38 MHz。注意,VisualAnalog无法正确找到谐波频率,因为它不 解析NCO频率和抽取率。

        
图10. 信号经过DDC后的FFT复数输出曲线(NCO = 155 MHz,4倍抽取)。如果DDC设为实数输入和复数输出,并且NCO频率为155 MHz(实际是154.94 MHz),那么从FFT中可以看出AD9680- 500的输出频谱,而抽取率为4。我鼓励大家了解信号流程 图,理解频谱是如何偏移和转换的。我还鼓励大家详细了解 本文中的示例,以便理解DDC对于ADC输出频谱的影响。我 建议打印图8 并随时参考, 供分析AD9680 、AD9690 、 AD9691和AD9684的输出频谱时使用。支持这些产品时,我 遇到了很多人们认为无法解释的ADC输出频谱相关的频率问 题。然而一旦完成了分析,并通过NCO和抽取滤波器分析了 信号流,之前认为无法解释的频谱杂散便可以证明它们实际 上是确实应当存在的信号。我希望,通过阅读和学本文, 下次碰到集成DDC的ADC时,您可以更有准备地处理问题。 敬请关注第二部分—我们将从其它方面继续讨论DDC,以及 如何">仿真它的行为。我们将讨论ADC混叠导致的抽取滤波器 响应,将会提供更多示例,并使用Virtual Eval来观察AD9680 中的DDC工作情况及其对ADC输出频谱的影响。
Jonathan Harris
Jonathan Harris是ADI公司高速转换器部(北卡罗来纳州格林斯博罗)的一名产品应用工程师。他担任支持射频行业产品的应用工程师已过7年。他从奥本大学和北卡罗来纳大学夏洛特分校分别获得">电子工程硕士(MSEE)学位和电子工程学士(BSEE)学位。



以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,仪器仪表交易网对此不承担任何保证责任。
温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。

上一篇: FM08SCF 液压接头及软管
下一篇: E2Q2-N20F3-H接近开关

推荐资料