单、双向拉伸土工格栅与不同填料的试验。单向拉伸土工格栅加筋时,填料与筋材之间的表面力对界面抗剪强度起主导作用,拉拔曲线和直剪曲线一般为应化型;双向拉伸土工格栅加筋时,由于格栅孔眼面积大,填料对筋材的嵌锁咬合力对界面抗剪强度起决定作用,嵌锁咬合作用随着位移水的而逐渐发挥,拉拔曲线和直剪曲线通常为应化型。。通过碳-芳混杂纤维布加固圆木柱(杉木和松木)的轴心抗压性能试验,研究了不同层数的碳-芳混杂纤维布加固圆木柱的形式、轴心抗压强度、峰值压应变和荷载-应变曲线.结果表明:用碳-芳混杂纤维布加固后,圆木柱的轴心抗压强度和峰值压应变有了明显的提高,轴心抗压强度提高幅度约为6.6%~16.8%(松木)和5.0%~16.9%(杉木),峰值压应变提高幅度约为8.9%~60.2%(松木)和11.5%~56.8%(杉木).基于试验数据拟合,提出了碳-芳混杂纤维布加固圆木柱轴心抗压承载力的计算公式.
土工织物的另一名称为土工布。早期产品少,意思为用于岩土工作中的一种布状材料。 网眼目数为每25.4mm长度内的孔数

讨论了玄武岩纤维与聚丙烯纤维的"纤维混杂效应"对混凝土基体力学性能的影响。结果表明,玄武岩-聚丙烯混杂纤维混凝土(B-P HFRC)的劈裂抗拉强度和抗折强度明显高于玄武岩纤维混凝土(B FRC)和聚丙烯纤维混凝土(P FRC)。提出了"纤维混杂效应函数"的概念,利用MATLAB数据拟合的方法求得了玄武岩-聚丙烯纤维混杂效应函数,对其求极值获得了玄武岩-聚丙烯混杂纤维对混凝土力学性能改善的体积掺加率。土工织物编辑 土工材料:

介绍了基于表面活性剂的温拌沥青混合料生产工艺.试验结果表明:浓缩液法温拌沥青玛蹄脂碎石(SMA)混合料可比相应的热拌沥青混合料降低拌和温度约30~40℃;进一步测试温拌沥青混合料的马歇尔稳定度、流值、浸水马歇尔稳定度、冻融劈裂、谢伦堡析漏、肯塔堡飞散以及车辙动稳定度等现行规范所列的试验项目后发现:不论是否改性,浓缩液法温拌SMA混合料都可达到相应热拌沥青混合料的性能,并且满足现行规范要求.另外,室内试验表明,浓缩液法改性温拌SMA-13混合料的疲劳寿命要比相应的热拌沥青混合料有所提高.土工合成材料的原材料是高分子聚合物(polymer)。它们是由煤、石油、天然气或石灰石中提炼出来的化学物质制成,再进一步加工成纤维或合成材料片材,后制成各种产品。制造土工合成材料的聚合物主要有聚(PE)、聚酯(PET)、聚酰胺(PER)、聚丙烯(PP)和聚氯(PVC)、氯化聚(CPE)、聚苯(EPS)等 [1] 。 行业(JT/T 480—2002)中型号表示:
与单向拉伸土工格栅相比,双向拉伸土工格栅加筋为较高的界面黏聚力。在同一试验工况下,双向拉伸土工格栅的加筋效果要优于单向拉伸土工格栅。对于黏性土,填料压实度影响拉拔界面强度和拉拔曲线发展形态,垂直应力影响界面剪应力峰值和峰值发挥时的位移水,拉拔速率的会拉拔阻力峰值;对于砂土,填料相对密度,在一定程度上;拉拔界面综合系数,不同垂直应力水下拉拔曲线初始斜率基本相同,但界面剪应力峰值随着垂直应力水的而,拉拔速率对拉拔曲线影响不大。单、双向拉伸土工格栅与不同填料的拉拔和直剪试验对比表明,直剪试验可以比相同工况下拉拔试验高的界面角,致使直剪试验的界面综合系数高于拉拔试验结果

对四种高模玻纤分别进行了浸胶纱的拉伸性能、层合板的单层厚度及0°拉伸性能的研究,并对四种高模玻纤对工字梁刚度的影响进行了模型分析。四种高模玻纤具有相近的原纱拉伸模量,层合板在等纤维体积含量下具有相近的0°拉伸模量,但是在真空导入成型工艺中,由于单层厚度的差异导致纤维体积分数不同,从而具有不同的0°拉伸模量。在应用于同样铺层的工字梁时,单层厚度为0.78mm的高模玻纤层合板对应的工字梁刚度比单层厚度为0.83mm的高模玻纤层合板约6%。 双向玻纤土工格栅采用无碱玻璃纤维无捻粗纱,利用经编机织成基材,因循相似相容原理,通过改性沥青涂覆处理而成的面网状结构材料。其采用经编定向结构,充分利用织物间纱线,改善了力学性能,使其具有较高的抗拉强度、抗撕裂强度、耐蠕变性能;重点突出其与沥青混合料的复合性能,极大提高了基材的耐磨性及抗剪切能力。 玻纤土工格栅命名及型号表示:
宽度的单位为cm
公司已通过ISO9001:2008体系、矿用产品标志、欧盟CE、ISO14001:2004体系,公司产品被评为“山东”,公司注册商标被认定为“山东省商标”。 网眼目数为每25.4mm长度内的孔数
以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,仪器仪表交易网对此不承担任何保证责任。
温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。